• 제목/요약/키워드: Cavity Element

검색결과 314건 처리시간 0.027초

Drill을 이용한 Die-Cavity 형상의 황삭 가공 경로 생성 (The Roughing Tool-Path Generation of Die-Cavity Shape Using the Drill)

  • 임표;이희관;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.398-401
    • /
    • 2001
  • This paper presents rough cutting pat고 drilling. This method has differences from conventional method which uses boundary curve by intersecting object to machine and each cutting plane. Die-cavity shape is drilled in z-map, we select various tool and remove much material in the short time. as a result, this method raise productivity. The major challenges in die-cavity pocketing include : 1)finding an inscribed circle for removing material of unmachined regions, 2) selecting optimal tool and efficiently arranging tool, 3) generating offset surface of shape, 4) determining machined width according to the selected tool, 5) detecting and removing unmachined regions, and 6) linking PJE(path-joining element). Conventional machining method calling contour-map is compared with drilling method using Z-map, for finding efficiency in the view of productivity.

  • PDF

Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis

  • Yang, Hongso;Park, Chan;Shin, Jin-Ho;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Chung, Hyunju
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권3호
    • /
    • pp.184-190
    • /
    • 2018
  • PURPOSE. To analyze stress distribution in premolars restored with inlays or onlays using various materials. MATERIALS AND METHODS. Three-dimensional maxillary premolar models of abutments were designed to include the following: 1) inlay with O cavity (O group), 2) inlay with MO cavity (MO group), 3) inlay with MOD cavity (MOD group), and 4) onlay (ONLAY group). A restoration of each inlay or onlay cavity was simulated using gold alloy, e.max ceramic, or composite resin for restoration. To simulate masticatory forces, a total of 140 N static axial force was applied onto the tooth at the occlusal contact areas. A finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. RESULTS. Maximum von Mises stress values generated in the abutment teeth of the ONLAY group were ranged from 26.1 to 26.8 MPa, which were significantly lower than those of inlay groups (O group: 260.3-260.7 MPa; MO group: 252.1-262.4 MPa; MOD group: 281.4-298.8 MPa). Maximum von Mises stresses generated with ceramic, gold, and composite restorations were 280.1, 269.9, and 286.6 MPa, respectively, in the MOD group. They were 252.2, 248.0, 255.1 MPa, respectively, in the ONLAY group. CONCLUSION. The onlay design (ONLAY group) protected tooth structures more effectively than inlay designs (O, MO, and MOD groups). However, stress magnitudes in restorations with various dental materials exhibited no significant difference among groups (O, MO, MOD, ONLAY).

실내모형실험과 개별요소법을 이용한 지반 공동 및 이완영역 모사에 관한 연구 (A Study on Simulation of Cavity and Relaxation Zone Using Laboratory Model Test and Discrete Element Method)

  • 김주봉;유승경;한중근;홍기권;박종범
    • 한국지반신소재학회논문집
    • /
    • 제16권2호
    • /
    • pp.11-21
    • /
    • 2017
  • 지반함몰의 발생은 하수관 파손으로 인한 토사유실이 주원인으로써 그 대책을 수립하기 위해서는 공동과 이완영역의 발생, 주변 지반의 거동을 이해하여야 할 필요성이 있다. 본 논문에서는 지중 하수관의 파손으로 인한 지반함몰 메커니즘 분석을 위해 실내모형실험과 개별요소 수치해석을 실시하였다. 실내모형실험에서는 알루미늄 봉과 트랩도어를 이용하여 모형지반의 거동을 모사하였고, 개별요소 수치해석은 모형실험과 동일한 경계조건으로 수행하여 그 결과를 모형실험 결과와 비교분석하였다. 모형실험 및 개별요소 결과로부터 토사유실로 인한 공동과 이완영역의 형상 및 규모를 파악하였으며, 공동 주변 지반의 간극비 분포 특성 및 이완정도를 파악할 수 있었다.

유한요소법을 이용한 치근단절제술후 근첨의 응력분포에 관한 연구 (FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN ROOT-END RESECTED TEETH)

  • 이세준;최호영;민병순;박상진;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제23권1호
    • /
    • pp.163-174
    • /
    • 1998
  • The purpose of this study is to evaluate the distribution of stress in the root end resected teeth. The finite element method was used to compare stresses along the root and retrograde filling material in seven two-dimensional models of mandibular 2nd premolar. Each model was endodontic treatment and gold crown' restoration. Each model divided with amagam core restoration or gold casting post restoration. Thus each model divided with shape of root end resection, depth of retropreparation and exposure length of root in the bony cavity. The seven models were classified as in the table 1 below. A load of 500N was applied $45^{\circ}$ diagonally on the lingual slope of the buccal cusp. These mode were analyzed with two dimensional finite element methods. The results of this study were as follows : 1. The maximum tensile stress along the inner canal wall was shown on the model 7. 2. When the model 1 was compared with the model 5, the maximum tensile stress along the inner canal wall showed the model 1. 3. Less equivalent stress was shown on the model 6 and more equivalent stress was shown on the model 4. 4. More shear stress was shown on the retrograde filling material of the model 7. 5. The models with increased length of exposed root in the bony cavity demonstrated a gradual increase to the tensile stress in X direction which occurred approximately a boundary between the bone and exposed root in' the bony cavity. 6. The model which had a case of matching the apex of post and a boundary between the bone and exposed root in the bony cavity demonstrated more increase tensile stress in X direction than other models.

  • PDF

유한요소법을 이용한 2급 복합레진 와동의 비교 연구 (A STUDY ON CLASS II COMPOSITE RESIN CAVITY USING FINITE ELEMENT STRESS ANALYSIS)

  • 임영일;여인호;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.428-446
    • /
    • 1997
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2 of intercuspal distance) were varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows : 1. Displacement of buccal cusp in R model occurred and increased as widening of the cavity, and displacement in B model was little and not influenced by cavity width. 2. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 3. With the increase of the isthmus width, B model showed no change in the stress and strain. In R model, the stress and strain increased both in the area of buccal-pulpal line angle and the buccal side of marginal ridge, therefore the possibility of crack increased. 4. The stress and strain were distributed evenly on the tooth in B model, but in R model, were concentrated on the buccal side of the distal marginal ridge and buccal-pulpal line angle, therefore the possibility of fracture increased.

  • PDF

열간 자유단조시 내부 공극 압착 거동에 관한 유한요소해석 (FEM Analysis on Cavity Closure Behavior during Hot Open Die Forging Process)

  • 이영선;권용철;권용남;이승욱;김남수;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.50-52
    • /
    • 2007
  • Large size forged parts usually were made by hot open die forging because of the die cost, high applied load and small manufacturing quantities. Cast ingots were used in open die forging and the ingots almost included the cavities in its inside. Therefore, one of the aims for forging processes is to close and remove the cavities. However, its criteria were well not defined since the studies have many difficulties to investigate the cavity behaviors because of its large size. In this study, the cavity closure behavior was investigated by experimental and FE analysis. The FEM analysis is performed to investigate the overlap defect of cast ingots during free forging stage. The measured flow stress data were used to simulate the forging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}$-3D. The calculated results of cavity closure behavior are compared with the measured results before and after forging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.

  • PDF

T-DMB 송신용 고출력 6소자 Cavity Delay Filter의 구현 (Implementation of 6-Element High Power Cavity Filter for T-DMB)

  • 고남규;손태호;이용창
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.173-179
    • /
    • 2012
  • 본 연구에서는 국내 T-DMB 시스템에서 대역통과필터 기능을 수행 하는 cavity 필터를 설계하고자 HFSS 툴을 사용하여 그 특성을 시뮬레이션 하였으며, 이를 활용하여 필터를 제작하여 측정한 특성을 시뮬레이션 결과와 비교하였다. 전자계 3D 시뮬레이션 Tool인 HFSS를 사용하여 cavity 필터를 시뮬레이션 하는 것은, 실제로 필터를 제작하기 전에 성능을 미리 점검함으로서 최적화된 모델을 구축하여 시간과 비용을 최대한 절약할 수 있도록 하는 것이다. 원통형 도파관의 특성을 파악하여 필터의 최적의 조건들을 얻도록 연구하였으며, 이를 바탕으로 HFSS 시뮬레이션 및 제작을 하여 특성을 측정하여 설계값과 비교하였다.

경계요소법(境界要素法)에 의한 2차원(次元) 응력해석(應力解析) (Two-dimensional Stress Analysis Using Boundary Element Method)

  • 장창두;이성훈
    • 대한조선학회지
    • /
    • 제23권4호
    • /
    • pp.11-18
    • /
    • 1986
  • The fundamental theory and application of boundary element method for two-dimensional problem are introduced in this paper. Based on this boundary element procedure, several numerical calculations such as circular cavity problem, a thin plate with hole under tension and a long thick-walled cylinder under internal pressure are performed. The numerical results show fairly good agreement with exact solutions or results of finite element method.

  • PDF

지하공동위에 위치한 확대기초지 지지력 산정 기법 (Bearing Capacity Determination Method for Spreading Footings Located above Underground Cavities)

  • 유충식
    • 한국지반공학회지:지반
    • /
    • 제13권1호
    • /
    • pp.75-84
    • /
    • 1997
  • 본 고에서는 지하공동위에 위치한 확대기초의 지지력 산정기법을 제시하였다. 지지력 산정기법의 개발을 위해서 필자에의해 개발된 3차원 탄소성 유한요소해석 프로그램을 이용하여 지하공동위에 위치한 확대기초의 지지력에 대한 매개변수 변환연구를 수행하였다. 매개변수 변환연구의 결과를 이용하여 각 경계조건의 지지력을 평가하고 이를 지지력 산정기법 개발에 필요한 데 이터 베이스로 활용하였으며, 수집된 데이터 베이스에 대한 다중회귀분석을 통해 반 경험적 지지력 산정기법을 개발하였다. 개발된 지지력 산정기법은 기존의 모형기초실험 및 유한요소해석 결과와의 비교를 통해 그 타당성이 검증되었으며, 그 결과 본 연구의 범위내에 해당하는 실제 현장문제에 효율적으로 적용될 수 있을 것으로 사료된다.

  • PDF

금인레이 와동의 폭경이 응력분포와 변위에 미치는 영향에 관한 3차원 유한요소법적 연구 (A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON STRESS AND DISPLACEMENT RELATED TO ISTHMUS WIDTH OF GOLD INLAY CAVITY)

  • 황호길;임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제19권2호
    • /
    • pp.384-408
    • /
    • 1994
  • The purpose of this study was to evaluate the fracture resistance of tooth restored with gold inlay. A profound understanding of the isthmus width factor, which is one of the several parameters of cavity designs, would facilitate the appropriate cavity preparation in a specific clinical situation. In this study, the cavities for gold inlay were prepared in maxillary left first premolar. A three-dimensional model was designed using I-DEAS program. The model was composed of 2515- nodes and 2172 isoparametric brick elements. In the model isthmus width was varied into 1/4, 1/3 and 1/2 of intercuspal width respectively, and numeric values of the material properties of enamel, dentin and gold was set. Three types of load : concentrated load, divided load and distributed load was 500N. The empty cavities in the model were also examined using divided load and distributed load. The three - dimensional Finite Element Method was used to analysis the displacement and stress distribution. The results were as follows : 1. All of the experimental models which were filled with gold inlay revealed similar direction of displacement to that of the natural tooth model under the same load type. But in the models with empty cavities, as the isthmus width increased, the degree of displacement increased in the case of divided load type. 2. All experimental models which were filled with gold inlay showed stress concentration at load points, but in the models with empty cavities at divided load type, as isthmus width increased, stress was concentrated at the comer of the pulpal floor. 3. In the models with empty cavities at divided load type, tooth fracture was expected regardless of isthmus width, but all experimental models which were filled with gold inlay after cavity preparation were not susceptible to fracture. 4. In all experimental models which were filled with gold inlay after cavity preparation, displacement patterns were similar under both concentrated and divided load types. In the models with empty cavities, a divided load resulted in a bucco-lingual cuspal displacemenat in both sides, but a distributed load resulted in a lingual displacement of the tooth.

  • PDF