• Title/Summary/Keyword: Cavitation test

Search Result 267, Processing Time 0.104 seconds

Cavitation Compliance in 1D Part-load Vortex Models

  • Dorfler, Peter K
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.197-208
    • /
    • 2017
  • When Francis turbines operate at partial load, residual swirl in the draft tube causes low-frequency pulsation of pressure and power output. Scale effects and system response may bias the prediction of prototype behavior based on laboratory tests, but could be overcome by means of a 1D analytical model. This paper deals with the two most important features of such a model, the compliance and the source of excitation. In a distributed-parameter version, compliance should be represented as an exponential function of local pressure. Lack of similarity due to different Froude number can thus be compensated. The normally unknown gas content in the vortex cavity has significant influence on the pulsation, and should therefore be measured and considered as a test parameter.

A Study on the Erosion-Resistant Cermet Film Coating using the Detonation Spray Method (폭발용사에 의한 내에로젼성 서멧 피막 코팅에 관한 연구)

  • 김현근;남인철;오재환
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The properties of the detonation sprayed cermet coating are investigated through the mechanical, corrosion and erosion test. The test results are also compared with the properties of the substrate materials, STS 329J1, dual phase stainless steel and the plasma sprayed cermet coatings. The two kinds of carbide cermet power, WC+NiCr, Cr$_3$C$_2$+NiCr were used in this experiment. The experimental results showed that the anti-corrosive and anti-erosive properties of the detonation sprayed cermet coatings are superior to the plasma sprayed cermet coatings. The WC+NiCr cermet coating appears to be more effective than Cr$_3$C$_2$+NiCr cermet coating in abrasive erosion environment, whereas the Cr$_3$C$_2$+NiCr cermet coatings are more effective in cavitation erosion environment.

  • PDF

Enhancement of Anaerobic Biodegradability using the Solubilized Sludge by the Cavitation process (Cavitation에 의해 가용화된 슬러지의 혐기성 생분해도 향상에 관한 연구)

  • Kim, Dongha;Lee, Jaegyu;Jung, Euitaek;Jeong, Hoyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • In order to investigate the effective pretreatment methods in WAS(=waste activated sludge) solubilization, the values of SCOD yield per unit SS (SCOD/gSS.hr) were compared. After the hydrodynamic cavitation with pH of 12.5, SCOD increased to 7800 mg/L, SS decreased to 45 % and the solubilization rate was 29 %. Combination of alkality (pH 12.5) and the cavitation seems to be the optimal condition for sludge solubilization. After the cavitational pretreatment, efficiencies of anaerobic digestion of the unfiltered sludge(the control), raw sludge and pretreated sludge were evaluated with BMP(=biochemical methane potential) tests. For evaluation of the biodegradability characteristics of pretreated sewage sludge, the methane production has been measured for 6 months. The methane production of pretreated sludge increased 1.4 times than that of untreated sludge. The result indicates that the cavitationally pretreated sludge was a better biodegradability substrate in anaerobic condition compared to raw sludge. It is obvious that cavitational pretreatment could enhance not only solubilization but also biodegradability of WAS. In conclusion, cavitational pretreatment of WAS to convert the particulate into soluble portion was shown to be effective in enhancing the digestibility of the WAS.

Addition of nano particle to increase the cavitation resistance of urethane (나노입자 첨가를 통한 우레탄수지의 캐비테이션 저항 향상)

  • Lee, Iksoo;Kim, Nackjoo;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.679-687
    • /
    • 2014
  • In this study, a new paint which is able to resist the cavitation erosion is tried to be developed by using urethane added with nano particles such as multi-wall and single-wall carbon nano tube and spherical and fiber type graphite. The new paint synthesized was characterized with physical properties and resistivity to cavitation erosion($t_{50}$). Among nano particles, fiber type graphite($t_{50}$ 292min) showed high hardness and wear resistance compared with spherical type($t_{50}$ 182min). For carbon nano tube, single-wall type($t_{50}$ 286min) was higher than multi-wall type in wear resistance. Fiber-type graphite was the best nano-particle for paint with resistivity to cavitation erosion. In the application test of paint, the manually painted sample showed surface with smooth but the surface of sample prepared with spray was not smooth. During spray, dust was fixed on the surface.

Effects of Cavitation and Drop Characteristics on Oleo-Pneumatic Type Landing Gear Systems (공동현상을 고려한 유공압 방식 착륙장치의 낙하특성에 관한 연구)

  • Han, Jae-Do;Lee, Young-Sin;Kang, Yeon-Sik;Ahn, Oh-Sung;Kong, Jeong-Pyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.193-200
    • /
    • 2009
  • This paper investigated the drop characteristics of oleo pneumatic type landing gear for small aircraft and the effects of cavitations in modeling the landing gear system. The landing gear system employed a simple oleo pneumatic type damper without a metering pin. In general, oleo-pneumatic type landing gears are light-weighted because of it's simplicity, yet they offer excellent impact absorption characteristics. In this study, the landing gear system was modeled using MSC ADAMS, which offers a drop simulation module. After modeling the system, a series of testing was conducted, using a prototype landing gear system, to validate the analysis model and simulation results. The effect of cavitation was considered in the simulation model to obtain a better correlation between the test and simulation results. The results show that adding the cavitation effect in the simulation model significantly improved the simulation model and better captured the dynamic behaviors of the landing system. Using the 'cavitation' model, dynamics characteristics of the landing gear were further evaluated for other landing conditions, such as landing in various angles of slopes.

Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers (압축성과 비압축성 유동해석에 따른 수중 추진기 날개 끝 와류공동과 공동소음에 대한 수치비교 연구)

  • Ha, Junbeom;Ku, Garam;Cho, Junghoon;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.261-269
    • /
    • 2021
  • Without any validation of the incompressible assumption, most of previous studies on cavitation flow and its noise have utilized numerical methods based on the incompressible Reynolds Average Navier-Stokes (RANS) equations because of advantage of its efficiency. In this study, to investigate the effects of the flow compressibility on the Tip Vortex Cavitation (TVC) flow and noise, both the incompressible and compressible simulations are performed to simulate the TVC flow, and the Ffowcs Williams and Hawkings (FW-H) integral equation is utilized to predict the TVC noise. The DARPA Suboff submarine body with an underwater propeller of a skew angle of 17 degree is targeted to account for the effects of upstream disturbance. The computation domain is set to be same as the test-section of the large cavitation tunnel in Korea Research Institute of Ships and Ocean Engineering to compare the prediction results with the measured ones. To predict the TVC accurately, the Delayed Detached Eddy Simulation (DDES) technique is used in combination with the adaptive grid techniques. The acoustic spectrum obtained using the compressible flow solver shows closer agreement with the measured one.

Study of the Open-Water Test and Analysis for a Pumpjet Propulsor in LCT (대형 캐비테이션터널에서 펌프젯 추진기 단독성능 시험 및 해석 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Jung, Hong-Seok;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.149-156
    • /
    • 2022
  • In order to study the open-water test and analysis techniques for pumpjet propulsors in the Large Cavitation Tunnel (LCT), at the Korea Research Institute of Ships and Ocean Engineering, a set of test equipment was designed and manufactured. The pumpjet propulsor is composed of rotor, stator and duct resulting in the strong interaction between the components. A ring-shaped sensor was developed to measure the thrust and torque for duct and stator. The test equipment including the pumpjet is installed on an existing POW dynamometer in the reverse direction. The results from the reverse POW test setup were validated against those from the conventional POW test setup in the Towing Tank (TT) as well as in the LCT. The pumpjet open-water test was conducted at the Reynolds number of around 1.0×106, at which the obtained experimental data became stable in the Reynolds number effect test. The open-water test for the rotor (rotor-only) was conducted to study whether the duct and stator should be considered as a part of the hull or the propulsor. On the basis of the test results, it was shown that the duct and stator could be included in the propulsor. The total thrust, combined thrust of rotor, duct, and stator was used for the pumpjet open-water test analysis. As the whole pumpjet is defined as a propulsor, it is thought that the self-propulsion test and analysis could be conducted in the same way as that of the conventional propeller.

Study on Bubble Collecting Section of Cavitation Tunnel for Ventilated Supercavitation Experiments (환기 초공동 실험을 위한 캐비테이션 터널 기포 포집부 연구)

  • Paik, Bu-Geun;Park, Il-Ryong;Kim, Ki-Sup;Lee, Kurnchul;Kim, Min-Jae;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.300-306
    • /
    • 2016
  • The gas ventilated by supercavitation splits into smaller bubbles and follows the water passage of the cavitation tunnel. The bubbles quickly return to the test section by rather high speed flow, and interrupt the observation of the supercavitation. To secure clear observation in the test section, the bubble collecting section(settling chamber) of large volume is prepared to collect bubbles in the water passage ahead of the test section. The bubble collecting section should provide enough buoyancy effect to the bubbles for proper bubble collecting. However, rather high-speed oncoming flow produces non-uniform velocity distribution and deteriorates buoyancy effect in the bubble collecting section. In the present study, the bubble collecting space and three porous plates are designed and analyzed through numerical methods, and the bubble collecting function is experimentally validated by 1/10-scaled model in terms of the formation of uniformly low velocity distribution in the bubble collecting section.

Water Performance Test of Pumps for a 7 Ton Class Rocket Engine (7톤급 로켓엔진용 펌프 수류 성능시험)

  • Hong, Soonsam;Kim, Daejin;Choi, Changho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Performance test was conducted for an oxidizer pump and a fuel pump for a 7 ton class rocket engine, by using water. The pumps were driven by an electric motor. The hydrodynamic performance and the suction performance were measured at flow ratio of the design and off-design conditions. Head-flow curve, efficiency-flow curve, and head-cavitation number curve were obtained. It is confirmed that the pumps can satisfy the design requirements of hydrodynamic performance in terms of the head and the efficiency. The pumps also satisfied the design requirements of suction performance.

Experimental approach to estimate strength for compacted geomaterials at low confining pressure

  • Kim, Byeong-Su;Kato, Shoji;Park, Seong-Wan
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.459-469
    • /
    • 2019
  • It is important to estimate the shear strength of shallow compacted soils as a construction material. A series of constant water content triaxial compression (CWCC) tests under low confining state in this study were performed on compacted geomaterials. For establishing a relationship of the shear strengths between saturated and unsaturated states on compacted geomaterials, the suction stresses were derived by two methods: the conventional suction-measured method and the Suction stress-SWRC Method (SSM). Considering the suction stress as an equivalent confining stress component in the (${\sigma}_{net}$, ${\tau}$) plane, it was found that the peak deviator stress states agree well with the failure line of the saturated state from the triaxial compression test when the SSM is applied to obtain the suction stress. On the other hand, the cavitation phenomenon on the measurement of suction affected the results of the conventional suction-measured method. These results mean that the SSM is distinctly favorable for obtaining the suction value in the CWCC test because the SSM is not restricted by the cavitation phenomenon. It is expected that the application of the SSM would reduce the time required, and the projected cost with the additional equipment such as a pore water measuring device in the CWCC test.