• 제목/요약/키워드: Cavitation number

검색결과 174건 처리시간 0.029초

Study of Cavitation Instabilities in Double-Suction Centrifugal Pump

  • Hatano, Shinya;Kang, Donghyuk;Kagawa, Shusaku;Nohmi, Motohiko;Yokota, Kazuhiko
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권3호
    • /
    • pp.94-100
    • /
    • 2014
  • In double-suction centrifugal pumps, it was found that cavitation instabilities occur with vibration and a periodic chugging noise. The present study attempts to identify cavitation instabilities in the double-suction centrifugal pump by the experiment and Computational Fluid Dynamics (CFD). Cavitation instabilities in the tested pump were classified into three types of instabilities. The first one, in a range of cavitation number higher than breakdown cavitation number, is cavitation surge with a violent pressure oscillation. The second one, in a range of cavitation number higher than the cavitation number of cavitation surge, is considered to be rotating cavitation and causes the pressure oscillation due to the interaction of rotating cavitation with the impeller. Last one, in a range of cavitation number higher than the cavitation number of rotating cavitation, is considered to be a surge type instability.

대형 공동 수조에서의 변동 압력 계측 (Measurement of Cavitation-Induced Pressure Fluctuation in a Large Cavitation Tunnel)

  • 나윤철;강관형;김영기;이무열
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.791-796
    • /
    • 2000
  • The cavitation-induced fluctuating pressure of the container ship named "Sydney Express" is measured in Samsung Large Cavitation Tunnel(SCAT). In the measurements, a complete ship model is employed. The effects of thrust coefficient and cavitation number on cavity pattern and cavitation-induced fluctuating pressure were investigated experimentally. It is demonstrated that the fluctuating pressure coefficient is very sensitive to the cavitation number. The results of cavitation and pressure fluctuations are compared with those of ITTC and HSVA, which shows fairly good agreement. It is exhibited that the removal of rudder can significantly change the loading condition of a propeller, and can reduce the fluctuating pressure coefficient almost by half.

  • PDF

Numerical Analysis of the Influence of Acceleration on Cavitation Instabilities that arise in Cascade

  • Iga, Yuka;Konno, Tasuku
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2012
  • In the turbopump inducer of a liquid propellant rocket engine, cavitation is affected by acceleration that occurs during an actual launch sequence. Since cavitation instabilities such as rotating cavitations and cavitation surges are suppressed during launch, it is difficult to obtain data on the influence of acceleration on cavitation instabilities. Therefore, as a fundamental investigation, in the present study, a three-blade cyclic cascade is simulated numerically in order to investigate the influence of acceleration on time-averaged and unsteady characteristics of cavitation that arise in cascade. Several cases of acceleration in the axial direction of the cascade, including accelerations in the upstream and downstream directions, are considered. The numerical results reveal that cavity volume is suppressed in low cavitation number condition and cavitation performance increases as a result of high acceleration in the axial-downstream direction, also, the inverse tendency is observed in the axial-upstream acceleration. Then, the regions in which the individual cavitation instabilities occur shift slightly to a low-cavitation-number region as the acceleration increases downstream. In addition, in a downstream acceleration field, neither sub-synchronous rotating cavitation nor rotating-stall cavitation are observed. On the other hand, rotating-stall cavitation occurs in a relatively higher-cavitation-number region in an upstream acceleration field. Then, acceleration downstream is robust against cavitation instabilities, whereas cavitation instabilities easily occur in the case of acceleration upstream. Additionally, comparison with the Froude number under the actual launch conditions of a Japanese liquid propellant rocket reveals that the cavitation performance will not be affected by the acceleration under the current launch conditions.

단일 거칠기 요소가 벤투리 캐비테이션에 미치는 영향 (Effects of a single roughness element on Venturi cavitation)

  • 황종빈;신이수;김주하
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.57-66
    • /
    • 2023
  • In this study, we investigate the effects of a single roughness element on Venturi cavitation. The single roughness element of hemispherical shape is installed at the throat inlet of a Venturi tube. Since the wake behind the roughness element induces an additional pressure drop, cavitation inception occurs at a higher Cavitation number for the Venturi model with the single roughness element than for the Venturi model with no roughness. Cavitation bubbles form along the wake of the roughness element and lengthen in the streamwise direction as the Cavitation number decreases, forming a longitudinal cavitation. With a further decrease in the Cavitation number, the longitudinal cavitation bubble merges with the sheet cavitation initiated from the exit edge of the Venturi tube throat, followed by the shedding of cloud cavitation. The merging of the longitudinal cavitation and sheet cavitation is accompanied by a sudden decrease in the discharge coefficient and an increase in the pressure loss coefficient as it chokes the flow inside the Venturi tube.

레이놀즈 수가 터보펌프 인듀서 캐비테이션 성능에 미치는 영향 측정 (Measurement of Reynolds Number Effects on Cavitation Performance in a Turbopump Inducer)

  • 김준호;송성진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.820-823
    • /
    • 2017
  • 터보펌프 인듀서에서 레이놀즈 수가 캐비테이션 성능에 미치는 영향을 실험적으로 연구하였다. 인듀서 입구에서 압력을 측정하여 캐비테이션 수에 따른 양정계수 변화를 구하였다. 물의 온도와 인듀서 회전수를 변화시켜 일정한 무차원 열적 변수에서 레이놀즈 수를 변경시켜 캐비테이션 성능을 측정하였다. 낮은 무차원 열적 변수에서는 캐비테이션 성능 곡선이 레이놀즈 수 변화에 영향을 받지 않는다. 하지만 높은 무차원 열적 변수에서는 레이놀즈 수가 증가함에 따라 임계 캐비테이션 수가 증가하였다.

  • PDF

Experimental Study on the Performance of a Turbopump Inducer

  • Hong, Soon-Sam;Kim, Jin-Sun;Park, Chang-Ho;Kim, Jinhan
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.240-244
    • /
    • 2004
  • Characteristics of steady and unsteady cavitation in a turbopump inducer were investigated in this paper. To see the effect of tip clearance on the inducer performance, three cases of tip clearance were tested. The helical inducer, which has two blades with inlet tip blade angle of 7.8 degree and tip solidity of 2.7, was tested in the water. In the non-cavitating condition, the inducer head decreased with increase in the tip clearance. Rotating cavitation and cavitation surge were observed through unsteady pressure measurements at the inducer inlet. The cell number and propagation speed of the rotating cavitation were determined through cross-correlation analysis. During the rotating cavitation one cell rotated at the same rotational speed as that of the inducer rotation and the cavitation surge did not rotate. The critical cavitation number increased with increase in the tip clearance at the same flow rate, but the change of critical cavitation number was small at the nominal flow rate.

  • PDF

노즐 오리피스 형상에 따른 Discharge Coefficient와 Cavitation에 관한 실험적 연구 (Experimental Study of Discharge Coefficient and Cavitation for Different Nozzle Geometries)

  • 김성열;구건우;홍정구;이충원
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.933-939
    • /
    • 2010
  • 본 연구는 타원형 노즐과 원형 노즐 내부에서 발생되는 cavitation의 발생 및 성장을 실험적으로 관찰하였다. 원형 노즐과 타원형 노즐의 cavitation 특성을 가시화 하기위해 투명한 아크릴로 노즐을 제작하였다. 실험에 사용된 노즐들은 같은 단면적으로 제작되었으며, 타원형 노즐의 경우 형상비(a/b)를 다르게 하였다. 분사압력의 증가에 따라 노즐내부 유동은 no cavitation, cavitation, hydraulic flip 영역으로 나뉘어졌다. 노즐의 형상에 상관없이 no cavitation과 cavitation 영역에서는 분사압력의 증가에 따라 유량은 증가하며, 유출계수는 감소하는 경향을 나타냈다. 그러나 hydraulic flip 영역에서의 유량계수는 일정한 값을 나타냈다. 타원형 노즐은 원형 노즐에 비해 높은 cavitation number에서 cavitation이 성장, 발달하였다. 특히 타원형 노즐에서는 장축의 cavitation length가 단축보다 길게 나타났다.

Comparing geometric parameters of a hydrodynamic cavitation process treating pesticide effluent

  • Randhavane, Shrikant B.
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.318-323
    • /
    • 2019
  • Paper focuses on comparison between two different orifice plate configurations (plate number 1 and plate number 2) used as cavitating device in the hydrodynamic cavitation reactor for improving pollutant removal efficiencies. Effect of four different parameters such as hydraulic characteristics (in terms of range of flow rates, orifice velocities, cavitation number at different inlet pressures); cavitation number (in range of 5.76-0.35 for plate number 1 and 1.20-0.35 for plate number 2); inlet pressure (2-8 bars) and reaction time (0 to 60 min) in terms of chemical oxygen demand (COD) removal and chlorpyrifos degradation has been studied and compared. Optimum inlet pressure of 5 bars exists for degradation of pollutants for both the plates. It is found that geometry of orifice plate plays important role in removal efficiencies of pollutant. Results obtained confirmed that orifice plate 1 with configuration of 1.5 mm 17 holes; cavitational number of 1.54 performed better with around 60% COD and 98% chlorpyrifos removal as compared to orifice plate 2 having configuration of 2 mm single hole; cavitational number of 0.53 with 40% COD and 96% chlorpyrifos in 2 h duration time.

Cavitation optimization of single-orifice plate using CFD method and neighborhood cultivation genetic algorithm

  • Zhang, Yu;Lai, Jiang;He, Chao;Yang, Shihao
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1835-1844
    • /
    • 2022
  • Single-orifice plate is wildly utilized in the piping system of the nuclear power plant to throttle and depressurize the fluid of the pipeline. The cavitation induced by the single-orifice plate may cause some serious vibration of the pipeline. This study aims to find the optimal designs of the single-orifice plates that may have weak cavitation possibilities. For this purpose, a new single-orifice plate with a convergent-flat-divergent hole was modeled, a multi-objective optimization method was proposed to optimize the shape of a single-orifice plate, while computational fluid dynamics method was adopted to obtain the fluid physical quantities. The reciprocal cavitation number and the developmental integral were treated as cavitation indexes (e.g., objectives for the optimization algorithm). Two non-dominant designs ultimately achieved illustrated obvious reduction in the cavitation indexes at a Reynolds number Re = 1 ×105 defined based on fluid velocity. Besides, the sensitivity analysis and temperature effects were also performed. The results indicated that the convergent angle of the single-orifice plate dominants the cavitation behavior globally. The optimal designs of single-orifice plates result in lower downstream jet areas and lower upstream pressure. For a constant Reynolds number, the higher temperature of liquid water, the easier it is to undergo cavitation. Whereas there is a diametric phenomenon for a constant fluid velocity. Moreover, the regression models were carried out to establish the mathematical relation between temperature and cavitation indexes.

원판 캐비테이터의 환기 초공동에 대한 실험적 연구 (An Experimental Study on Ventilated Supercavitation of the Disk Cavitator)

  • 김병진;최정규;김형태
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.236-247
    • /
    • 2015
  • In this paper, the experimental equipments for ventilated supercavitation in cavitation tunnel is constructed and the basic data of ventilated supercavitation regard to the entrainment coefficient and Froude number is fulfilled. The experiments are conducted for the disk cavitator with injecting air and the pressure inside cavity and the shape of cavity are measured. As the entrainment coefficient increases while the Froude number is kept constant, the ventilated cavitation number decreases to a minimum value which decreases no more even with increasing the air entrainment. The minimum value of ventilated cavitation number, caused by the blockage effect, decreases according to increasing the diameter ratio of test section to cavitator. The cavity length is rapidly enlarged near the minimum cavitation number. In low Froude numbers, the cavity tail is floating up due to buoyancy and the air inside the cavity is evacuated from its rear end with twin-vortex hollow tubes. However, in high Froude numbers, the buoyancy effect is almost negligible and there is no more twin-vortex tubes so that the cavity shape becomes close to axisymmetric. In order to measure the cavity length and width, the two methods, which are to be based on the cavity shapes and the maximum width of cavity, are applied. As the entrainment coefficient increases after the ventilated cavitation number gets down to the minimum cavitation number, the cavity length still increases gradually. These phenomenon can be confirmed by the measurement using the method based on the cavity shapes. On the other hand, when the method based on the maximum width of cavity is used, the length and width of the cavity agree well with a semi-empirical formular of natural cavity. So the method based on the maximum width of cavity can be a valid method for cavitator design.