DOI QR코드

DOI QR Code

Effects of a single roughness element on Venturi cavitation

단일 거칠기 요소가 벤투리 캐비테이션에 미치는 영향

  • Jongbin Hwang (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology) ;
  • Yisu Shin (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology) ;
  • Jooha Kim (Department of Mechanical Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2022.11.11
  • Accepted : 2023.02.24
  • Published : 2023.03.31

Abstract

In this study, we investigate the effects of a single roughness element on Venturi cavitation. The single roughness element of hemispherical shape is installed at the throat inlet of a Venturi tube. Since the wake behind the roughness element induces an additional pressure drop, cavitation inception occurs at a higher Cavitation number for the Venturi model with the single roughness element than for the Venturi model with no roughness. Cavitation bubbles form along the wake of the roughness element and lengthen in the streamwise direction as the Cavitation number decreases, forming a longitudinal cavitation. With a further decrease in the Cavitation number, the longitudinal cavitation bubble merges with the sheet cavitation initiated from the exit edge of the Venturi tube throat, followed by the shedding of cloud cavitation. The merging of the longitudinal cavitation and sheet cavitation is accompanied by a sudden decrease in the discharge coefficient and an increase in the pressure loss coefficient as it chokes the flow inside the Venturi tube.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 집단연구지원사업(2021R1A4A1032023)을 통해 한국연구재단의 지원받아 수행되었으며, 이에 감사드립니다.

References

  1. Ceccio, S. L., 2010, "Friction drag reduction of external flows with bubble and gas injection," Annu. Rev. Fluid Mech., Vol. 42, pp.183~203. https://doi.org/10.1146/annurev-fluid-121108-145504
  2. Bae, H. W., Lee, S. M., Song, M. S. and Sung, J. Y., 2019, "Flow visualizations and analysis on characteristics of bubbly flows exhausted from a venturi-type bubble generator with an air vent," Journal of the Korean Society of Visualization, Vol.17(1), pp.60~68.
  3. Choi, C. H., Choi, S. W. and Song, S. M., 2017, "Design and Performance Evaluation of Visualization System for Measuring the Void Fraction of Two-phase Flow," Journal of the Korean Society of Visualization, Vol.15(1), pp.11~18. https://doi.org/10.5407/jksv.2017.15.1.011
  4. Kim, G. R., Choi, S. W., Kim, Y. K. and Kim, K. C., 2012, "Measurement of Bubble Diameter and Rising Velocity in a Cylindrical Tank using an Optical Fiber Probe and a High Speed Visualization Technique," Journal of the Korean Society of Visualization, Vol.10(2), pp.14~19. https://doi.org/10.5407/JKSV.2012.10.2.014
  5. Kim, S. M., Jeong, W. T. and Kim, K. C., 2010, "Visualization Study on Kinematics of Bubble Motion in a Water Filled Cylindrical Tank," Journal of the Korean Society of Visualization, Vol.8(3), pp.41~48. https://doi.org/10.5407/JKSV.2010.8.3.041
  6. Callenaere, M., Franc, J., Michel M. and Riondet M., 2001, "The cavitation instability induced by the development of a re-entrant jet," J. Fluid Mech., Vol. 444, pp.223~256. https://doi.org/10.1017/S0022112001005420
  7. Stanley, C., Barber, T. and Rosengarten, G., 2014. "Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice," Int. J. Heat Fluid Flow., Vol.50, pp.169~176. https://doi.org/10.1016/j.ijheatfluidflow.2014.07.004
  8. Simpson, A. and Ranade, V. V., 2019, "Modeling hydrodynamic cavitation in venturi: Influence of venturi configuration on inception and extent of cavitation," AIChE. J., Vol.65(1), pp.421~433. https://doi.org/10.1002/aic.16411
  9. Li, M., Bussonniere, A., Bronson, M., Xu, Z. and Liu, Q., 2019, "Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles," Miner. Eng., Vol.132, pp.268~274. https://doi.org/10.1016/j.mineng.2018.11.001
  10. Kawanami, Y., Kato, H., Yamaguchi, H., Tanimura, M. and Tagaya, Y., 1997, "Mechanism and control of cloud cavitation," J. Fluids Eng., Vol.119(4), pp.788~794. https://doi.org/10.1115/1.2819499
  11. Coutier-Delgosha, O., Devillers, J. F., Leriche, M. and Pichon, T., 2005, "Effect of wall roughness on the dynamics of unsteady cavitation," J. Fluids Eng., Vol.127(4), pp.726~733. https://doi.org/10.1115/1.1949637
  12. Li, Y., Chen, H., Wang, J. and Chen, D., 2010, "Effect of grooves on cavitation around the body of revolution," J. Fluids Eng., Vol.132(1).
  13. Arndt, R. E. and Ippen, A. T., 1968, "Rough surface effects on cavitation inception," J. Basic Eng., Vol.90(2), pp.249~261. https://doi.org/10.1115/1.3605086
  14. Stutz, B., 2003, "Influence of roughness on the two-phase flow structure of sheet cavitation," J. Fluids Eng., Vol.125(4), pp652~659. https://doi.org/10.1115/1.1596240
  15. Danlos, A., Ravelet, F., Coutier-Delgosha, O. and Bakir, F., 2014, "Cavitation regime detection through Proper Orthogonal Decomposition: Dynamics analysis of the sheet cavity on a grooved convergent-divergent nozzle," Int. J. Heat Fluid Flow., Vol.47, pp.9~20. https://doi.org/10.1016/j.ijheatfluidflow.2014.02.001
  16. Bashir, T. A., Soni, A. G., Mahulkar, A. V. and Pandit, A. B., 2011, "The CFD driven optimisation of a modified venturi for cavitational activity," Can. J. Chem. Eng., Vol.89(6), pp.1366~1375. https://doi.org/10.1002/cjce.20500
  17. Zuo, Z., Zhang, H., Ren, Z., Chen, H. and Liu, S., 2022, "Thermodynamic effects at Venturi cavitation in different liquids," Phys. Fluids., Vol.34(8), pp.083310.
  18. Zhang, H., Zuo, Z., Morch, K. A. and Liu, S., 2019, "Thermodynamic effects on Venturi cavitation characteristics," Phys. Fluids, Vol.31(9), pp.097107.
  19. Cooper, J. R. and Dooley, R. B., 2007, "Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam," International Association for Properties of Water and Steam, Lucerne, Switzerland, 2007.
  20. Rudolf, P., Hudec, M., Griger, M. and Stefan, D., 2014, "Characterization of the cavitating flow in converging-diverging nozzle based on experimental investigations," In. EPJ. Web of conferences., Vol.67, pp.02101, EDP Sciences.
  21. Bermejo, D., Escaler, X. and Ruiz-Mansilla, R., 2021, "Experimental investigation of a cavitating Venturi and its application to flow metering," Flow Meas. Instrum., Vol.78, pp.101868.
  22. International Organization for Standardization, 2003, "Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-section Conduits Running Full: Mesure de Debit Des Fluides Au Moyen D'apparils Deprimogenes. Inseres Dans Des Conduites en Charge de Section Ciculaire. General Principles and Requirements," International Organization for Standardization.