• 제목/요약/키워드: Cavitation inception

검색결과 54건 처리시간 0.026초

프로펠러 캐비테이션의 초기발생과 소음특성에 대한 실험연구 (An Experimental Study on Noise Characteristics of Propeller Cavitation Inception)

  • 이필호;안병권;이창섭;이정훈
    • 대한조선학회논문집
    • /
    • 제48권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Cavitation is the formation of vapour bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapor pressure. Various types of cavitations are generated on the propeller blades. As cavity bubbles passing the blade are forced to oscillate in size or shape and come to collapse, they cause very strong local acoustic waves in the fluid and radiate noise. Comparing the Sound Pressure Level(SPL) before and after cavitation, SPL increases 2dB per 1 knot increase in ship speed above the cavitation inception speed(CIS). Consequently, the CIS is an important criteria to design silent propellers. In this work, experimental measurements of radiated noise according to various types of cavitations from the model propeller are carried out in a large cavitation tunnel and their acoustical characteristics are extensively investigated.

유압관로에서의 캐비테이션 초생 (Cavitation inception in oil hydraulic pipeline)

  • 이일영;염만오;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.46-52
    • /
    • 1988
  • The cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below-1 MPa(absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. In order to interpret the experimental results on cavitation inception, the growth of a spherical bubble in viscous compressible fluid due to a stepwise pressure drop was investigated by numerical analysis, and the critical bubble radius was obtained. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised conditions about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF

3차원 날개의 캐비테이션 소음 계측시험 (Experimental Study on the Cavitation Noise of a Hydrofoil)

  • 이승재;서종수;한재문
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.111-118
    • /
    • 2007
  • In order to investigate the noise characteristics of the different caviation, noise measurements were carried out in a large cavitation tunnel of the Samsuug Ship Model Basin(SSMB). The noise measurements for a 3-dimensional hydrofoil were carried out at the angle of attack of $12^{\circ}$ and $16^{\circ}$ according to the decrease in cavitation number. It is exhibited that sound pressure level(SPL) increased sharply with cavitation inception. The frequency of the noise induced by sheet cavitation was higher than that of tip vortex cavitation in the phase of cavitation inception. Within the range of the high frequency, in the case of fully developed cavitation, sheet cavitation noise was significantly increased in sound pressure level compared with tip vortex cavitation noise. In this study, the noise characteristics of the different cavitation types were considered experimentally and would be utilized as a basis for the analysis of propeller cavitation noise.

A Numerical Study on Cavitation Suppression Using Local Cooling

  • Zhang, Yuan-Yuan;Sun, Xiao-Jing;Huang, Dian-Gui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.292-300
    • /
    • 2010
  • This study strives to develop an effective strategy to inhibit cavitation inception on hydrofoils by using local cooling technique. By setting up a temperature boundary condition and cooling a small area on the upper surface of a hydrofoil, the fluid temperature around the cooling surface will be decreased and thereby the corresponding liquid saturation pressure will drop below the lowest absolute pressure within the flow field. Hence, cavitation can never occur. In this paper, a NACA0015 hydrofoil at $4^{\circ}$ angle of attack was numerically investigated to verify the effectiveness of the proposed technique. The CFD results indicate that the cooling temperature and the cooling surface roughness are the critical factors affecting the success of such technique used for cavitation suppression.

실선관측에 의한 가변추진기의 캐비테이션 초생속도 향상에 관한 연구 (A study on the improvement of cavitation inception speed for controllable pitch propeller in the actual warship)

  • 임용수;조관준;연제길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1170-1174
    • /
    • 2014
  • 추진기에서 캐비테이션이 발생되면 효율이 저하되고 진동과 소음이 발생한다. 소음은 캐비테이션이 처음으로 발생되는 시점부터 크게 증가되므로 캐비테이션 초생속도(CIS)를 가능한 높이는 것이 중요하다. 본 논문에서는 가변추진기의 캐비테이션 초기발생 현상을 확인하기 위하여 처음으로 캐비테이션 실선관측을 수행하였다. 관측 결과 가변추진에서 캐비테이션 초기발생은 볼트 캐비테이션으로 확인되어 볼트부위를 개선한 새로운 형상의 가변추진기를 제안하였다. 개선된 가변추진기에서는 볼트 캐비테이션이 전혀 발생되지 않았으며, CIS는 개선 전 가변추진기 보다 약 4.5 노트 향상된 것을 확인하였다. 본 연구 결과는 향후 저소음 가변추진기 개발과 CIS 성능 향상에 매우 유용한 자료로 활용될 것이다.

딥러닝 기술을 이용한 캐비테이션 자동인식에 대한 연구 (A Study on Autonomous Cavitation Image Recognition Using Deep Learning Technology)

  • 지바한;안병권
    • 대한조선학회논문집
    • /
    • 제58권2호
    • /
    • pp.105-111
    • /
    • 2021
  • The main source of underwater radiated noise of ships is cavitation generated by propeller blades. After the Cavitation Inception Speed (CIS), noise level at all frequencies increases severely. In determining the CIS, it is based on the results observed with the naked eye during the model test, however accuracy and consistency of CIS values are becoming practical issues. This study was carried out with the aim of developing a technology that can automatically recognize cavitation images using deep learning technique based on a Convolutional Neural Network (CNN). Model tests on a three-dimensional hydrofoil were conducted at a cavitation tunnel, and tip vortex cavitation was strictly observed using a high-speed camera to obtain analysis data. The results show that this technique can be used to quantitatively evaluate not only the CIS, but also the amount and rate of cavitation from recorded images.

2차원 Cascade에 의한 연료펌프의 공동발생 해석 (Cavitation in Fuel Pump with 2D Cascade Modeling)

  • 타이쿠앙나;이창진
    • 한국항공우주학회지
    • /
    • 제37권5호
    • /
    • pp.483-489
    • /
    • 2009
  • 원심형 연료펌프의 공동발생 특성을 해석하기 위하여 2차원 cascade 모델링을 적용한 수치 해석 코드를 개발하였다. 해석 코드의 해석 능력에 대한 타당성을 검증한 후, 원심형 펌프의 임펠러 블레이드 주위 유동에 대한 공동 발생을 예측하였다. 본 연구에서 사용한 원심형 연료 펌프의 작동 조건에서는 공동이 발생하지 않는 것을 확인 하였다. 그러나 펌프의 회전속도가 설계점 조건보다 높은 작동점 이외의 영역에서는 공동이 발생할 가능성이 있다. 작동유체의 온도가 낮아지면 공동 발생의 위험이 감소 하지만 온도가 높아지면 작동 영역을 조금 벗어난 입구 유속에서도 공동이 발생할 수 있음을 알았다.

프로펠러 설계 및 선미 부가물 수정에 따른 캐비테이션 초기발생 선속(CIS) 성능 향상 연구 (Study of the Cavitation Inception Speed (CIS) Improvement Through the Propeller Design and the Stern Appendage Modification)

  • 안종우;김건도;백부근;박영하;설한신
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.231-239
    • /
    • 2023
  • In order to improve the propeller Cavitation Inception Speed (CIS) performance, it needs to modify the propeller geometry and the wake distribution that flows into the propeller. In the previous study, the twisted angles of the V-strut were modified to improve propeller CIS, cavitation behavior and pressure fluctuation performances. Then the propeller behind the modified V-strut (New strut) showed better cavitation characteristics than that behind the existing V-strut (Old strut). However, the CIS of Suction Side Tip Vortex (SSTV) and Pressure Side Tp Vortex (PSTV) showed a big difference at behind each V-strut. In this study, the balance design is conducted to minimize the difference between SSTV CIS and PSTV CIS at behind each V-strut. To improve the propeller CIS performance, 1 propeller is designed at behind the old strut and 3 propellers are designed at behind the new strut. The propeller CIS is increased through the balance design and the stern appendage modification. The final propeller CIS is increased about 5.3 knots higher than that of the existing propeller at behind the old strut. On the basis of the present study, it is thought that the better improvement method for the propeller CIS would be suggested.

물 분사를 이용한 프로펠러 날개 끝 보오텍스 캐비테이션 제어 (Propeller Tip Vortex Cavitation Control Using Water Injection)

  • 이창섭;한재문;김진학;안병권
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.770-775
    • /
    • 2010
  • As considerable interests in noise emission from the ships have been increased, control of the propeller cavitation generating vibration and radiating noise is looming large. In general, the tip vortex cavitation is first produced in case of full scale propellers, and noise levels rise dramatically from that moment. In order to reduce induced noise from the tip vortex cavitation and hence increase the cavity inception speed, we propose the mass injection method. Water injected from the propeller tip decreases rotating speed of the tip flow, and it restrains growing the tip vortex cavity. Experimental investigations of the model tests carried out in a large cavitation tunnel show that the tip vortex cavitation is effectively controled by water injection from the propeller tip.

컴퓨터 비전을 이용한 프로펠러 캐비테이션 평가 연구 (Study on estimation of propeller cavitation using computer vision)

  • 이태구;김기성;홍지우;안병권;이경준
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.128-135
    • /
    • 2022
  • Cavitation occurs inevitably in marine propellers rotating at high speed in the water, which is a major cause of underwater radiated noise. Cavitation-induced noise from propellers rotating at a specific frequency not only reduces the sonar detection capability, but also exposes the ship's location, and it causes very fatal consequences for the survivability of the navy vessels. Therefore cavity inception speed (CIS) is one of the important factors determining the special performance of the ship. In this study, we present a method using computer vision that can detect and quantitatively estimate tip vortex cavitation on a propeller rotating at high speed. Based on the model test results performed in a large cavitation tunnel, the effectiveness of this method was verified.