• Title/Summary/Keyword: Cavitation corrosion rate

Search Result 30, Processing Time 0.023 seconds

공업용수배관의 캐비테이션-침식특성에 관한 연구 ( 1 ) ( Study on the Charactistics of Cavitation Erosion for Industrial Water Piping ( 1 ) )

  • 김윤곤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.312-319
    • /
    • 1994
  • Recently, with the rapid development in the industries such as an iron mill and chemical plants, there is enlarged by the use of the piping. Sepecially, the piping connected with a fluid, if it is increase the speed of running fluid, ought to generate cavitation phenomenon with unbalanced pressure. So, the cavitation phenomenon cause serious damage of the piping, because it generate erosion and corrosion in the piping. In this study, the steel pipe piping water (SPPW) and SPPW on weldment were tested by using of cavitation-erosion test apparatus with nozzle and were investigated under the marine environment of liquid. (specific resistance : 25 $Omega$. cm) The main results obtained are as follows : 1) The total weight loss and weight loss rate of affected zone of weldment by corrosion-erosion in the sea water are more increased than that of base metal. 2) The electrode potential by corrosion-erosion in the sea water becomes less noble than that of base metal, and current density is more increased. 3) As time goes by, the total weight loss and weight loss rate by cavitation erosion-corrosion in air-liquid 2 phase flow become more increased then those in only liquid solution. but these values turn to be decreased.

  • PDF

Effect of Solution Temperature on the Cavitation Degradation Properties of Epoxy Coatings for Seawater Piping

  • Jeon, J.M.;Yoo, Y.R.;Jeong, M.J.;Kim, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.335-346
    • /
    • 2021
  • Since epoxy resin coating shows excellent properties in formability, adhesion, and corrosion resistance, they have been extensively used in many industries. However, various types of damages in the epoxy coated tube within a relative short time have been reported due to cavitation erosion, liquid impingement, variation of temperature and pressure. Nevertheless, there has been little research on the effect of temperature on the cavitation degradation of epoxy coatings. Therefore, this work used an ultrasonic cavitation tester to focus on the effect of solution temperature on the cavitation properties of 3 kinds of epoxy coatings in 3.5% NaCl. The cavitation properties were discussed basis on the material properties and environmental aspects. As the solution temperature increased, even though with large fluctuation, the cavitation degradation rates of A and B coatings were reduced rapidly, but the rate of C coating was decreased gradually. In addition to the cushioning effect, the reason that the cavitation degradation rate reduced with solution temperature was partly related to the brittle fracture and water absorptivity of the epoxy coatings, and the water density, but was little related to the shape and composition of the compound in the coatings or the phase transition of the epoxy coating.

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment (해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

Influence of Shot Peening on Cavitation Erosion Resistance of Gray Cast Iron (쇼트피닝이 회주철의 캐비테이션 침식 저항성에 미치는 영향)

  • Park, Il-Cho
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.143-151
    • /
    • 2021
  • In this study, optimal shot peening process conditions were investigated for improving the cavitation erosion resistance of gray cast iron under a marine environment. Shot peening was performed with variables of injection pressure and injection time. The durability was then evaluated through cavitation erosion test which was conducted according to the modified ASTM G-32 standard. The tendency of cavitation erosion damage according to shot peening process condition was investigated through weight loss rate, surface and cross-sectional analysis of the specimen before and after the test. As a result, the shot peening process condition that could minimize cavitation erosion was when the injection pressure was the lowest and when the injection time was the shortest. This was because the flake graphite exposed on the gray cast iron surface could be easily removed under such condition. Therefore, the notch effect can be prevented by surface modification. In addition, the cavitation erosion damage mechanism of gray cast iron was discussed in detail.

Evaluation of Cavitation Characteristics in Seawater on HVOF Spray Coated Layer with WC-27NiCr Material for Cu Alloy (구리합금에 대한 WC-27NiCr 초고속화염용사 코팅층의 해수내 캐비테이션 특성 평가)

  • Han, Min-Su;Kim, Min-Sung;Jang, Seok-Ki;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.263-269
    • /
    • 2012
  • Copper alloys are commonly applied to ship's propellers, pumps and valves which are serviced in seawater due to their good castability and corrosion resistance. In the environment of high flow velocity, however, erosion damage predominates over corrosion damage. In particular, the cavitation in seawater environment accelerates surface damage to copper alloys, resulting in degradation of products and economic losses and also threatening safety. The surface was coated with WC-27NiCr by high velocity oxygen fuel(HVOF) spraying technique to attain durability and cavitation resistance of copper alloys under high velocity/pressure flow. The cavitation test was performed for the WC-27NiCr coating deposited by HVOF in seawater at the amplitude of $30{\mu}m$ with seawater temperature. The cavitation at $15^{\circ}C$ caused exfoliation of the coating layer in 17.5 hours while that of $25^{\circ}C$ caused the exfoliation in 12.5 hours. When the temperature of seawater was elevated to $25^{\circ}C$ from $15^{\circ}C$, more damage was induced by over 160%. Although WC-27NiCr has good durability, corrosion resistance and eletrochemical stability, the cavitation damage rate of the coating layer could remarkably increase at the elevated temperatures under cavitation environments.

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel (오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향)

  • Kim, Seong-Jong;Lee, Seung-Jun;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.484-492
    • /
    • 2013
  • With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

Fundamental Study on Cathodic Protection and Material Development as Erosion-Control Methods of Oceanic Centrifugal Pump(1) (해상용 원심펌프 임펠러의 침식억제법으로 음극방식 및 재료개발에 관한 기초연구 1)

  • 이진열;임우조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.56-66
    • /
    • 1995
  • Recently, with theraped advancement in th oceanology such an ocean-going vessel and oceanic structures, there is a need to study the cavitation erosion-corrosion control of pump impeller, the partial element of ocean machinery, for more effective operation. Especially, the cathodic protection (impressed current method & Al-sacrificial anode method) was applied to sea water, and Cu-alloy material mixed Zn & Al was used as a control method of cavitation erosion-corrosion. In this study, used the piezoelectric vibrator with 20KHz, 24.mu.m to cavity generation apparatus, and investigated the weight loss, weight loss rate, electrode potential & current density etc. under this condition. According to test result, thos describes how to indentify an influence of the cathodic protection and Al & Zn addition in material development for the control of cavitation erosion-corrosion, and those will serve as fundamental data on the cavitation erosion-corrosion control of oceanic centrifugal pump.

  • PDF

Development of Corrosion Rust Removing Unit for Small Ship Propeller (소형선박용 프로펠러의 부식 녹 제거장치 개발)

  • Kim, Gui-Shik;Han, Se-Woong;Hyun, Chang-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.72-77
    • /
    • 2005
  • The materials used in a ship screw propeller are commonly made with brass. The seawater corrosion and seawater cavitation of the screw propeller reduces the propulsive performance of the ship. In screw manufacturing, the corrosion rust of the screw propeller is removed through a hand grinding method. The grinding process produces dust of the heavy metals from the brass. The dust creates a poor working environment that is harmful to the health of the workers. An automatic corrosionrust removing apparatus, using a blasting method, was developed for the improvement of screw polishing conditions and its working environment. The performance of this apparatus was investigated by surface roughness, weight loss rate, hardness, electrochemical corrosion resistance, and cavitation erosion, after removing of the corrosion rust under various blasting conditions. Two medias of alumina and emery were used in this experiment. The surface roughness and hardness of the screw were improved by this apparatus. The electrochemical corrosion potential (Ecorr) and current density (Icorr) were measured by the dynamic polarization method, using a potentiostat,under the conditions of surface polishing with grinding, blasting, wire brushing, and fine sand papering. The test results prove that the new corrosion rust-removing apparatus improves the surface performance of a screw propeller.

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

Cavitation Characteristics of Al-Mg and Al-Mg-Si Alloy for Ship in Sea Water (선체 재료용 Al-Mg 합금과 Al-Mg-Si 합금의 해수 내 캐비테이션 특성)

  • Kim, Seong-Jong;Kim, Kyu-Hwan;Lee, Seung-Jun
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.136-142
    • /
    • 2011
  • Al alloys have been used widely for commercial and military ships in most ocean countries since mid-1950s, and the value as light metal with high mechanical strength has been proven. As the safety and fuel efficiency of Al ships have improved, she can carry more freight, sail faster and travel longer distances. Furthermore, in the shipbuilding industry, Al alloys are applied as structural materials for ships to various areas including the deck of luxurious cruises, battleships and leisure ships. In addition, Al alloys are being spotlighted as environmental-friendly material as they can be recycled even after end of lifespan. However, Al alloys for ships must be carefully selected after considering corrosion resistance, endurance, strength, and weldability in sea water environment. Al alloys to satisfy these conditions are used widely include 5000 series Al-Mg alloy and 6000 series Al-Mg-Si alloy. Thus, this study selected and evaluated the cavitation characteristics of the 5000 series Al alloys that are used in hulls that directly contact seawater and the 6000 Al alloys that are used in the upper structures of ships. Results of cavitation test with time, weightloss and cavitation rate of 5456-H116 showed the smallest damage among 5052-O, 5456-H116 and 6061-T6.