• Title/Summary/Keyword: Cavitation Effect

Search Result 317, Processing Time 0.041 seconds

Numerical investigation of the gravity effect on the shape of natural supercavity

  • Pouraria, Hassan;Park, Warn-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.58-64
    • /
    • 2011
  • The objective of this paper is to investigate the gravity effect on the shape characters of natural supercavity. A finite difference solver along with an implicit, dual time, preconditioned, three-dimensional algorithm has been used to solve the two-phase Navier Stokes equations. Numerical solutions were performed for natural supercavitating flow past a disk for different cavitation and Froud numbers. The numerical results were compared with corresponding analytical results in quantitative manner and it was found that the shape of supercavity was reasonably predicted Numerical results indicated that the gravity effect can induce the asymmetry of supercavity. The asymmetry was apparent when the froud number was smaller so that for constant cavitation number when we reduced the froud number the opt of the axis of supercavity increased. Moreover, for specific froud number a decrease in cavitation number resulted in an increase in the offset of the supercavity Numerical results revealed that for froud number greater than 25 the gravity effect is negligible.

  • PDF

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF

Cavitating Flow Characteristics around a 2-Dimensional Hydrofoil Section (2차원 날개 단면 주위의 캐비테이팅 유동 특성 연구)

  • Choi, Jung-Eun;Chung, Seok-Ho;Lee, Dong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.74-82
    • /
    • 2007
  • Recently, the erosion due to cavitation frequently occurs on a horn-type rudder of a high-speed large container carrier. It is necessary to understand the flow characteristics around a rudder in fully wetted and cavitating flow condition, and the process of generation and collapse of cavitation for a rudder design to minimize the cavity-induced erosion. The flow characteristics around a two-dimensional hydrofoil(NACA66) are investigated through the computational method utilizing a viscous flow theory applied to a cavitation model. The computational results from the viscous flow theory are verified by the comparison with the experimental results, and are compared with those from the potential flow theory. The effects of angle of attack, Reynolds number, cavitation number, and thickness ratio on the cavitating flow are also investigated.

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

The Effect of Distance between Two Transducers on Sonochemical Reactions in Dual Irradiation Systems (이중 초음파 조사 시스템에서 진동부 사이의 거리가 초음파 화학 반응에 미치는 영향)

  • Kim, Eunkyung;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.39-45
    • /
    • 2013
  • Many researchers have studied the effectiveness of ultrasound in chemical and environmental engineering fields including material synthesis, pollutant removal, cleaning, extraction, and disinfection. Acoustic cavitation induced by ultrasound irradiation in aqueous phase can cause various sonophysical and sonochemical reactions without any chemicals. However most of the previous studies focused only on the relationships between ultrasonic conditions and the results of sonochemical reactions in lab-scale sonoreactors. As a results of this, only a few studies have been devoted to design and optimization of industrial scale sonoreactors. In this study, the effect of the distance between two opposite transducer modules on sonochemical reactions was investigated in single and dual irradiation systems (334 kHz) for four distances including 50, 100, 150, and 200 mm using KI dosimetry. It was found that the dual irradiation systems provided higher performance in terms of the zeroth reaction coefficient and the cavitation yield compared to the single irradiation systems. The sonochemiluminescence (SCL) images for the visualization of the cavitation field showed that cavitation active zone was larger and sonochemical reaction intensity was much higher in the dual irradiation system than in the single irradiation system.

Numerical Analysis of Cavitating Flow around Two-dimensional Wedge-shaped Submerged Bodies under the Wall Effect (벽면효과를 받는 2차원 쐐기형 몰수체의 공동 유동에 대한 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.321-328
    • /
    • 2017
  • In practice, cavitation phenomena occur in unbounded flows. However, the wall effect is unavoidable during experiments at a closed section such as a cavitation tunnel. Especially, supercavity generated behind a cavitator is relatively large and thick, so that geometric and dynamic characteristics of the cavity are affected by the tunnel wall. In order to apply experimental results into the unbounded flow field, physical correlations are necessary. In this paper, we proposed an image method based on a potential flow to simulate the wall effect. Considering two-dimensional wedge-shaped bodies, configurations and drag characteristics of the cavity were examined according to the distance ratio to the wall surface. The results were compared and verified with existing theoretical and experimental results.

Stress Corrosion Cracking Behavior under Cavitation Erosion-Corrosion in Sea Water-Part (II) (해수환경중 캐비테이션 침식-부식 하에서의 응력부식균열 거동 (II))

  • 안석환;임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • Cavitation can occur in pipes when liquid is moving at high velocity, especially at pittings where the smooth bore of the pipe is interrupted. The effect is usually to produce pitting on the downstream side of the turbulence. However, stress corrosion cracking behavior under cavitation erosion-corrosion was neatly unknown. In this study, therefore, some were investigated of stress corrosion cracking behavior, others were stress corrosion cracking behavior under cavitation erosion-corrosion of water injection. And datas obtained as the results of experiment were compared between the two. Mainresult obtained are as follows: 1) Stress corrosion cracking growth rate of heat affected zone under cavitation erosion-corrosion becomes most rapid, and stress intensity factor $K_1$becomes most high. 2) Stress corrosion cracking growth mechanism by cavitation erosion-corrosion is judgement on the strength of the film rupture model and the tunnel model. 3) The range of potential as passivation of heat affected zone is less noble than that of base metal, and that value is smaller. 4) Corrosion potential under cavitation erosion-corrosion in loaded stress is less noble than that of stress corrosion, and corrosion current density is higher.

  • PDF