• Title/Summary/Keyword: Cavitation Damage

Search Result 141, Processing Time 0.025 seconds

Cavitation-Erosion Characteristics of the Stainless Steel with Adding Ti Stabilizer Element in Sea Water (안정화 원소 Ti 첨가에 따른 스테인리스강의 해수 내 캐비테이션-침식 특성)

  • Choi, Yong-Won;Yang, Ye-Jin;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.4
    • /
    • pp.344-348
    • /
    • 2016
  • Stainless steel is widely applied in many industrial fields due to its excellent anti-corrosion and durability characteristics. However, stainless steel is very vulnerable to cavitation attack caused by high speed flow of fluid in the chloride environments such as marine environment. These conditions promote intergranular corrosion and cavitation-erosion, leading to degradation of the structural integrity and service life. In order to prevent these problems, the stabilized stainless steel is applied to the offshore and shipbuilding industries. In this study, Ti was added to 19%Cr-9%Ni as the stabilizer element with different concentrations (0.26%, 0.71%), and their durabilities were evaluated with cavitation-erosion experiment by a modified ASTM G32 method. The microstructural change was observed with the stabilizer element contents. The result of the observation indicated that the amount of carbide precipitation was decreased and its size became finer with increasing Ti content. In the cavitation-erosion experiment, both weight loss and surface damage depth represented an inverse proportional relationship with the amount of Ti element. Consequently, the stainless steel containing 0.71% of Ti had excellent durability characteristics.

Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump

  • Liu, Hou-lin;Wang, Jian;Wang, Yong;Zhang, Hua;Huang, Haoqin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.119-131
    • /
    • 2014
  • The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the numerical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for declining the condensation coefficient, which is the most effective way.

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.

Development of New Cavitation Erosion Test Method for Analyzing the Durability of Erosion Resistance Paint (내침식페인트 성능 판별에 적합한 새로운 캐비테이션 침식시험기법 개발)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Kim, Ki-Sup;Kim, Tae-Gyu;Kim, Kyung-Rae;Jang, Young-Hun;Lee, Sang-Uk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.132-140
    • /
    • 2010
  • The very erosive cavitation is simulated by an inclined propeller dynamometer in the medium-size cavitation tunnel of MOERI. The inclined shaft for propeller makes strong cavitaion, which occurs around the root of a propeller blade. The cavitation begins at the leading edge of the propeller and contracted toward the trailing edge through the reentrant jet action. The cavity focused on the region near the trailing edge collapsed over the blade surface. As the impact pressure by the cavitation collapsing is too strong, it can damage the blade surface in the form of pit. This cavitation impacts created by the collapsing process are similar to the full-scale ones and are different from those by other erosion test methods. The newly developed cavitation erosion test method can be applied to evaluate the materials such as metals, ceramics and coatings in terms of cavitation resistance.

High-Temperature Rupture of 5083-Al Alloy under Multiaxial Stress States

  • Kim Ho-Kyung;Chun Duk-Kyu;Kim Sung- Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1432-1440
    • /
    • 2005
  • High-temperature rupture behavior of 5083-Al alloy was tested for failure at 548K under multiaxial stress conditions: uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times were compared for uniaxial, biaxial, and triaxial stress conditions with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the von Mises effective and principal facet stresses give good correlation for the material investigated, and these parameters can predict creep life data under the multiaxial stress states with the rupture data obtained from specimens under the uniaxial stress. The results suggest that the creep rupture of this alloy under the testing condition is controlled by cavitation coupled with highly localized deformation process, such as grain boundary sliding. It is also conceivable that strain softening controls the highly localized deformation modes which result in cavitation damage in controlling rupture time of this alloy.

Indentation Tensile Properties of Seawater Piping with Cavitation and Immersion Degradation (해수배관 내부 에폭시 코팅재의 캐비테이션 및 침지 열화에 따른 압입인장특성)

  • M. J. Jung;S. H. Kim;J. M. Jeon;Y. S. Kim;Y. C. Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.419-428
    • /
    • 2023
  • Seawater has been used to cool devices in nuclear power plants. However, the pipes used to transport seawater are vulnerable to corrosion; hence, the inner side of pipelines is coated with an epoxy layer as prevention. Upon coating damage, the pipe becomes exposed, and corrosion progresses. The major cause is widely known as cavitation corrosion, causing the degradation of mechanical properties. In this study, corroded specimens were prepared using cavitation and immersion methods to clarify the degradation trend of mechanical properties with corrosion. Three different types of epoxy coatings were used, and accelerated cavitation procedures were composed of amplitudes of 15 ㎛, 50 ㎛, and 85 ㎛ for 2 h, 4 h, and 6 h. The immersion periods were 3 and 6 weeks. We conducted instrumented indentation tests on all degradation samples to measure mechanical properties. The results showed that higher cavitation amplitudes and longer cavitation or immersion times led to more degradation in the samples, which, in turn, decreased the yield strength. Of the three samples, the C coating had the highest resistance to cavitation and immersion degradation.

공업용수배관의 캐비테이션-침식특성에 관한 연구 ( 1 ) ( Study on the Charactistics of Cavitation Erosion for Industrial Water Piping ( 1 ) )

  • 김윤곤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.312-319
    • /
    • 1994
  • Recently, with the rapid development in the industries such as an iron mill and chemical plants, there is enlarged by the use of the piping. Sepecially, the piping connected with a fluid, if it is increase the speed of running fluid, ought to generate cavitation phenomenon with unbalanced pressure. So, the cavitation phenomenon cause serious damage of the piping, because it generate erosion and corrosion in the piping. In this study, the steel pipe piping water (SPPW) and SPPW on weldment were tested by using of cavitation-erosion test apparatus with nozzle and were investigated under the marine environment of liquid. (specific resistance : 25 $Omega$. cm) The main results obtained are as follows : 1) The total weight loss and weight loss rate of affected zone of weldment by corrosion-erosion in the sea water are more increased than that of base metal. 2) The electrode potential by corrosion-erosion in the sea water becomes less noble than that of base metal, and current density is more increased. 3) As time goes by, the total weight loss and weight loss rate by cavitation erosion-corrosion in air-liquid 2 phase flow become more increased then those in only liquid solution. but these values turn to be decreased.

  • PDF

COMPARISON OF CFD SIMULATION AND EXPERIMENT OF CAVITATING FLOW PAST AXISYMMETRIC CYLINDER (전산해석과 실험의 비교검증을 통한 원통형 수중운동체 주위의 캐비테이션 유동현상 연구)

  • Park, H.M.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.78-85
    • /
    • 2012
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc., Thus, cavitating flow simulation is of practical importance for many engineering systems. In this study, a two-phase flow solver based on the homogeneous mixture model has been developed. The flow characteristics around an axisymmetric cylinder were calculated and then validated by comparing with the experimental results in the cavitation water tunnel at the Korea Ocean Research & Development Institute. The results show that this solver is highly suitable for simulating the cavitating flows. After the code validation, the cavity length with changes of water depth, angle of attack and velocity were obtained.. Cavitation inception was also calculated for various operational conditions.

Cavitation Characteristics of Al-Mg and Al-Mg-Si Alloy for Ship in Sea Water (선체 재료용 Al-Mg 합금과 Al-Mg-Si 합금의 해수 내 캐비테이션 특성)

  • Kim, Seong-Jong;Kim, Kyu-Hwan;Lee, Seung-Jun
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.136-142
    • /
    • 2011
  • Al alloys have been used widely for commercial and military ships in most ocean countries since mid-1950s, and the value as light metal with high mechanical strength has been proven. As the safety and fuel efficiency of Al ships have improved, she can carry more freight, sail faster and travel longer distances. Furthermore, in the shipbuilding industry, Al alloys are applied as structural materials for ships to various areas including the deck of luxurious cruises, battleships and leisure ships. In addition, Al alloys are being spotlighted as environmental-friendly material as they can be recycled even after end of lifespan. However, Al alloys for ships must be carefully selected after considering corrosion resistance, endurance, strength, and weldability in sea water environment. Al alloys to satisfy these conditions are used widely include 5000 series Al-Mg alloy and 6000 series Al-Mg-Si alloy. Thus, this study selected and evaluated the cavitation characteristics of the 5000 series Al alloys that are used in hulls that directly contact seawater and the 6000 Al alloys that are used in the upper structures of ships. Results of cavitation test with time, weightloss and cavitation rate of 5456-H116 showed the smallest damage among 5052-O, 5456-H116 and 6061-T6.

A Study on Improving the Enhanced Durability of Cylinder Liner according to Cavitation Influence of Combat Equipment Engine (전투장비 엔진의 캐비테이션 영향에 따른 실린더 라이너의 내구성 강화 방안에 관한 연구)

  • Kim, Daeun;Lee, Kijung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.1-8
    • /
    • 2021
  • Cylinder liners used in diesel engines of combat equipment are prone to cavitation due to wet cooling. The damage caused by erosion and corrosion due to cavitation has a fatal effect on the performance and lifespan of a diesel engine. Therefore, a study was conducted to improve the durability of cylinder liners. Two surface treatment techniques were proposed: nitriding and chrome plating. It was observed that the amount of erosion on the surface of nitride-treated cylinder liners was high because the surface-treated part eroded due to its weak impact resistance against the bubble explosion generated by cavitation. In contrast, the chrome-plated cylinder liner had a lower amount of erosion among the specimens subjected to the accelerated test. These results verified that the resistance of chrome-plated liners against cavitation is high. Therefore, it can withstand the impact of bubble explosion. If the chrome plating thickness is set with reference to the KS standard, an exceptional durability of abrasion, wear resistance, and corrosion resistance can be obtained. If the thickness is set between 120~250㎛, it is expected that the durability of the cylinder liner can be improved. Although a recovery method for corroded cylinder liners is suggested, the proposed method has an inherent risk of crack generation. Therefore, further research is required to solve this problem.