• Title/Summary/Keyword: Caveolin

검색결과 49건 처리시간 0.018초

고혈당으로 유도된 신장 mesangial cell 에서 nobiletin의 matrix accumulation 과 TGF-β1-Src-caveolin-1 signaling에 의한 사구체 경화증 억제효과 (Dietary nobiletin suppresses TGF-β1- Src-caveolin-1 dependent signaling involved with high glucose-induced renal mesangial matrix accumulation)

  • 김동연;강영희;강민경
    • Journal of Nutrition and Health
    • /
    • 제53권1호
    • /
    • pp.1-12
    • /
    • 2020
  • 본 연구에서는 고혈당으로 인해 유발되는 당뇨병성 신장병증의 대표적인 증상인 사구체 경화증을 완화시키는 nobiletin의 효능에 대해 알아보고자 하였다. 신장 세포인 HRMC를 이용하여 고혈당에서의 세포외 기질 축적 단백질의 발현과 경화에 관여하는 신호 전달 억제 효능을 확인한 결과 nobiletin은 고혈당의 자극에 의해 증가하는 섬유화 단백질인 collagen IV, fibronectin 그리고 CTGF의 발현을 억제하였으며, 여기에 관여하는 TGF-β1-Src-caveolin-1 신호 전달 경로를 통해 사구체 경화증을 억제하는 것을 확인하였다. 따라서 nobiletin은 고혈당으로 유도된 당뇨병성 신장병증에 있어 사구체 경화증을 예방하는 기능성 성분으로서의 활용 가능성을 확인하였다.

The purified extract of steamed Panax ginseng protects cardiomyocyte from ischemic injury via caveolin-1 phosphorylation-mediating calcium influx

  • Hai-Xia Li;Yan Ma;Yu-Xiao Yan;Xin-Ke Zhai;Meng-Yu Xin;Tian Wang;Dong-Cao Xu;Yu-Tong Song;Chun-Dong Song;Cheng-Xue Pan
    • Journal of Ginseng Research
    • /
    • 제47권6호
    • /
    • pp.755-765
    • /
    • 2023
  • Background: Caveolin-1, the scaffolding protein of cholesterol-rich invaginations, plays an important role in store-operated Ca2+ influx and its phosphorylation at Tyr14 (p-caveolin-1) is vital to mobilize protection against myocardial ischemia (MI) injury. SOCE, comprising STIM1, ORAI1 and TRPC1, contributes to intracellular Ca2+ ([Ca2+]i) accumulation in cardiomyocytes. The purified extract of steamed Panax ginseng (EPG) attenuated [Ca2+]i overload against MI injury. Thus, the aim of this study was to investigate the possibility of EPG affecting p-caveolin-1 to further mediate SOCE/[Ca2+]i against MI injury in neonatal rat cardiomyocytes and a rat model. Methods: PP2, an inhibitor of p-caveolin-1, was used. Cell viability, [Ca2+]i concentration were analyzed in cardiomyocytes. In rats, myocardial infarct size, pathological damages, apoptosis and cardiac fibrosis were evaluated, p-caveolin-1 and STIM1 were detected by immunofluorescence, and the levels of caveolin-1, STIM1, ORAI1 and TRPC1 were determined by RT-PCR and Western blot. And, release of LDH, cTnI and BNP was measured. Results: EPG, ginsenosides accounting for 57.96%, suppressed release of LDH, cTnI and BNP, and protected cardiomyocytes by inhibiting Ca2+ influx. And, EPG significantly relieved myocardial infarct size, cardiac apoptosis, fibrosis, and ultrastructure abnormality. Moreover, EPG negatively regulated SOCE via increasing p-caveolin-1 protein, decreasing ORAI1 mRNA and protein levels of ORAI1, TRPC1 and STIM1. More importantly, inhibition of the p-caveolin-1 significantly suppressed all of the above cardioprotection of EPG. Conclusions: Caveolin-1 phosphorylation is involved in the protective effects of EPG against MI injury via increasing p-caveolin-1 to negatively regulate SOCE/[Ca2+]i.

p38 Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyclooxygenase-2 Expression of Articular Chondrocytes

  • Yu, Seon-Mi;Cheong, Seon-Woo;Cho, Sam-Rae;Kim, Song-Ja
    • IMMUNE NETWORK
    • /
    • 제6권3호
    • /
    • pp.117-122
    • /
    • 2006
  • Background: Caveolin, a family of integral membrane proteins are a principal component of caveolae membranes. In this study, we investigated the effect of p38 kinase on differentiation and on inflammatory responses in sodium nitroprusside (SNP)-treated chondrocytes. Methods: Rabbit articular chondrocytes were prepared from cartilage slices of 2-week-old New Zealand white rabbits by enzymatic digestion. SNP was used as a nitric oxide (NO) donor. In this experiments measuring SNP dose response, primary chondrocytes were treated with various concentrations of SNP for 24h. The time course of the SNP response was determined by incubating cells with 1mM SNP for the indicated time period $(0{\sim}24h)$. The cyclooxygenase-2 (COX-2) and type II collagen expression levels were determined by immunoblot analysis, and prostaglandin $E_2\;(PGE_2)$ assay was used to measure the COX-2 activity. The tyrosine phosphorylation of caveolin-1 was determined by immunoblot analysis and immunostaining. Results: SNP treatment stimulated tyrosine phosphorylation of caveolin-1 and activation of p38 kinase. SNP additionally caused dedifferentiation and inflammatory response. We showed previously that SNP treatment stimulated activation of p38 kinase and ERK-1/-2. Inhibition of p38 kinase with SB203580 reduced caveolin-1 tyrosine phosphorylation and COX-2 expression but enhanced dedifferentiation, whereas inhibition of ERK with PD98059 did not affect caveolin-1 tyrosine phosphorylation levels, suggesting that ERK at least is not related to dedifferentiation and COX-2 expression through caveolin-1 tyrosine phosphorylation. Conclusion: Our results indicate that SNP in articular chondrocytes stimulates dedifferentiation and inflammatory response via p38 kinase signaling in association with caveolin-1 phosphorylation.

Protein-protein interaction between caveolin-1 and SHP-2 is dependent on the N-SH2 domain of SHP-2

  • Park, Hyunju;Ahn, Keun Jae;Kang, Jihee Lee;Choi, Youn-Hee
    • BMB Reports
    • /
    • 제48권3호
    • /
    • pp.184-189
    • /
    • 2015
  • Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) is known to protect neurons from neurodegeneration during ischemia/reperfusion injury. We recently reported that ROS-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 in astrocytes and complex formation between caveolin-1 and SHP-2 in response to oxidative stress. To examine the region of SHP-2 participating in complex formation with caveolin-1, we generated three deletion mutant constructs and six point mutation constructs of SHP-2. Compared with wild-type SHP-2, binding of the N-SH2 domain deletion mutant of SHP-2 to p-caveolin-1 was reduced greatly, using flow cytometric competitive binding assays and surface plasmon resonance (SPR). Moreover, deletion of the N-SH2 domain of SHP-2 affected $H_2O_2$-mediated ERK phosphorylation and Src phosphorylation at Tyr 419 in primary astrocytes, suggesting that N-SH2 domain of SHP-2 is responsible for the binding of caveolin-1 and contributes to the regulation of Src phosphorylation and activation following ROS-induced oxidative stress in brain astrocytes.

Src Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyc1ooxygenase-2 Expression in Articular Chondrocytes via p38 Kinase-dependent Pathway

  • Yu, Seon-Mi;Lee, Won-Kil;Yoon, Eun-Kyung;Lee, Ji-Hye;Lee, Sun-Ryung;Kim, Song-Ja
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.204-210
    • /
    • 2006
  • Background: Nitric oxide (NO) in articular chondrocytes regulates dedifferentiation and inflammatory responses by modulating MAP kinases. In this study, we investigated whether the Src kinase in chondrocytes regulates NO-induced dedifferentiation and cyclooxygenase-2 (COX-2) expression. Methods: Primary chondrocytes were treated with various concentrations of SNP for 24 h. The COX-2 and type II collagen expression levels were determined by immunoblot analysis, and prostaglandin $E_2\;(PGE_2)$ was determined by using a $PGE_2$ assay kit. Expression and distribution of p-Caveolin and COX-2 in rabbit articular chondrocytes and cartilage explants were determined by immunohistochemical staining and immunocytochemical staining, respectively. Results: SNP treatment stimulated Src kinase activation in a dose-dependent manner in articular chondrocytes. The Src kinase inhibitors PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine], a significantly blocked SNP-induced p38 kinase and caveolin-1 activation in a dose-dependent manner. Therefore, to determine whether Src kinase activation is associated with dedifferentiation and/or COX-2 expression and $PGE_2$ production. As expected, PP2 potentiated SNP-stimulated dedifferentiation, but completely blocked both COX-2 expression and $PGE_2$ production. And also, levels of p-Caveolin and COX-2 protein expression were increased in SNP-treated primary chondrocytes and osteoarthritic and rheumatoid arthritic cartilage, suggesting that p-Caveolin may playa role in the inflammatory responses of arthritic cartilage. Conclusion: Our previously studies indicated that NO caused dedifferentiation and COX-2 expression is regulated by p38 kinase through caveolin-1 (1). Therefore, our results collectively suggest that Src kinase regulates NO-induced dedifferentiation and COX-2 expression in chondrocytes via p38 kinase in association with caveolin-1.

Expression of Folate Receptor Protein in CHO Cell Line

  • Kim, Chong-Ho;Park, Seung-Taeck
    • 대한의생명과학회지
    • /
    • 제14권4호
    • /
    • pp.203-210
    • /
    • 2008
  • One of cell surface receptor proteins, human folate receptor (hFR) involves in the uptake of folates through cell membrane into cytoplasm, and is anchored to the plasma membrane by a fatty acid linkage, which has been identified in some cells as a glycosylphosphatidylinositol (GPI)-tailed protein with a molecular mass of about 40 kDa. The hFR is released by phosphatidylinositol phospholipase C (PI-PLC) because it contains fatty acids and inositol on the GPI tail. Caveolin decorates the cytoplasmic surface of caveolae and has been proposed to have a structural role in maintaining caveolae. It is unknown whether caveolin is involved in targeting, and is necessary for the function of GPI-tailed proteins. To compare the ability of folic acid binding, internalization and expression of hFR, and the effect of caveolin at the both apical and basolateral side of cell surfaces in Chinese hamster ovary (CHO) clone cells overexpressed the hFR and/or caveolin. Our present results suggest a possibility that the overexpression of caveolin does not be involved in expression of hFR, but plays a role as a factor in PI-PLC releasing kinetics, and for a regulation of formation, processing and function of hFR in CHO clone cells overexpressed cavcolin.

  • PDF

Expression of caveolin-3 as positive intracellular signaling regulator on the development of hypertrophy in cardiac tissues

  • Kim, Joo-Heon;Han, Jin;Kim, Yong-Kwon;Yang, Young-Ae;Hong, Yonggeun
    • 대한수의학회지
    • /
    • 제45권4호
    • /
    • pp.537-544
    • /
    • 2005
  • We have examined distribution and expression of caveolin-3 (cav-3), one of three caveolin isoforms from 16-wks-old spontaneously hypertensive rats (SHR) compared with age-matched control wistar-kyoto (WKY) rats. The expression of cav-3 was increased, whereas expression of PKB/Akt and calcineurin (Cn) was not changed in cardiac tissues of SHR compared to WKY rats. Interestingly, expression of cav-3, PKB/Akt and Cn were decreased in plasma membrane fraction in SHR compared to WKY rats. In H9c2 cardiomyoblast cells treated with phenylephrine ($50{\mu}M$, 48hr) or isoproterenol ($10{\mu}M$, 48hr), the expression of cav-3 was markedly enhanced compared to nontreated cells. Upon immunofluorescence analysis, cav-3 was localized in plasma membrane of control H9c2 cells. However phenylephrine or isoproterenol treatment caused translocation of cav-3 to perinuclear region. These results suggest that cav-3 plays as positive regulators in the development of hypertrophy in cardiac tissues of SHR rats.

PANC-1세포에서 발현된 재조합 MT1-MMP의 효소 활성 (Activities of Recombinant MT1-MMP Expressed in PANC-1 Cells.)

  • 김혜난;정혜신
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.422-425
    • /
    • 2008
  • Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-associated zinc-dependent endoproteinase involved in extracellular matrix remodeling. MT1-MMP hydrolyzes ECM proteins like collagen and is involved in cancer cell migration and metastasis. Caveolins are integral membrane proteins and play a role in formation of caveolae, specialized membrane microdomains involved in clathrin-independent endocytosis. Recombinant MT1-MMP was transiently expressed in PANC-1 cells. Cells expressing recombinant MT1-MMP were able to hydrolyze collagen and migrate on collagen coated trans-well. Both subjacent collagen degradation and the cell migration conferred by recombinant MT1-MMP were inhibited by co-transfection of plasmids containing caveolin-1 cDNA. The results support that MT1-MMP is localized in lipid raft of the membrane and MT1-MMP activities in invasive cells could be inhibited by caveolin.

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways

  • Anwar, Sumadi Lukman;Wahyono, Artanto;Aryandono, Teguh;Haryono, Samuel J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6803-6812
    • /
    • 2015
  • Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, $TGF{\beta}$, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.

Resource conservation using whole body autophagy: Self-digestion of shedded gut lining cells in the small intestine

  • Lee, Phil Jun;Cho, Namki;Yoo, Hee Min;Chang, Sun-Young;Ko, Hyun-Jeong;Kim, Hong Pyo
    • 한국식품과학회지
    • /
    • 제52권3호
    • /
    • pp.244-248
    • /
    • 2020
  • To retain valuable resources, organisms adopt several strategies including coprophagy. Cells covering the outer skin and internal digestive lumen are actively recycled to maintain their integrity. In present study, we suggested that the small intestine can consume dead cells in a manner similar to how it consumes protein from the diet. We examined the eluates from five segments of the mouse small intestine and cecum and 2 segments of the large intestine and small intestine tissue, and detected immunoreactivity with eukaryotic caveolin-1 and β-actin antibodies only in the cecum and 2 segments from the large intestine. Bacterial agitation of the mouse intestine with Shigella disrupted the architecture and absorptive function of the small intestine. Small intestine eluates were immunoreactive with murine caveolin-1 and contained heme as determined by dot blot analysis. We concluded that the body conserves resources in the small intestine by disposing of and recycling shedded cells.