Browse > Article

p38 Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyclooxygenase-2 Expression of Articular Chondrocytes  

Yu, Seon-Mi (Department of Biological Sciences, Kongju National University, College of Natural Sciences)
Cheong, Seon-Woo (Department of Biology, College of Natural Sciences, Changwon National University)
Cho, Sam-Rae (Department of Biological Sciences, Kongju National University, College of Natural Sciences)
Kim, Song-Ja (Department of Biological Sciences, Kongju National University, College of Natural Sciences)
Publication Information
IMMUNE NETWORK / v.6, no.3, 2006 , pp. 117-122 More about this Journal
Abstract
Background: Caveolin, a family of integral membrane proteins are a principal component of caveolae membranes. In this study, we investigated the effect of p38 kinase on differentiation and on inflammatory responses in sodium nitroprusside (SNP)-treated chondrocytes. Methods: Rabbit articular chondrocytes were prepared from cartilage slices of 2-week-old New Zealand white rabbits by enzymatic digestion. SNP was used as a nitric oxide (NO) donor. In this experiments measuring SNP dose response, primary chondrocytes were treated with various concentrations of SNP for 24h. The time course of the SNP response was determined by incubating cells with 1mM SNP for the indicated time period $(0{\sim}24h)$. The cyclooxygenase-2 (COX-2) and type II collagen expression levels were determined by immunoblot analysis, and prostaglandin $E_2\;(PGE_2)$ assay was used to measure the COX-2 activity. The tyrosine phosphorylation of caveolin-1 was determined by immunoblot analysis and immunostaining. Results: SNP treatment stimulated tyrosine phosphorylation of caveolin-1 and activation of p38 kinase. SNP additionally caused dedifferentiation and inflammatory response. We showed previously that SNP treatment stimulated activation of p38 kinase and ERK-1/-2. Inhibition of p38 kinase with SB203580 reduced caveolin-1 tyrosine phosphorylation and COX-2 expression but enhanced dedifferentiation, whereas inhibition of ERK with PD98059 did not affect caveolin-1 tyrosine phosphorylation levels, suggesting that ERK at least is not related to dedifferentiation and COX-2 expression through caveolin-1 tyrosine phosphorylation. Conclusion: Our results indicate that SNP in articular chondrocytes stimulates dedifferentiation and inflammatory response via p38 kinase signaling in association with caveolin-1 phosphorylation.
Keywords
SNP; caveolin-1; dedifferentiation; inflammatory response; p38 kinase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sandell LJ, Adler P: Developmental patterns of cartilage. Front Biosci 4;731-742, 1999   DOI
2 Reginato AM, Iozzo RV, Jimenez SA: Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on a hydrogel substrate. Arthritis Rheum 37;1338-1349, 1994   DOI   ScienceOn
3 Kim SJ, Chun JS: Protein kinase C-alpha and -zeta regulate nitric-oxide-induced NF-kappa B activation that mediates dedifferentiation in articular chondrocytes. Biochem Biophys Res Commun 303;206-211, 2003   DOI   ScienceOn
4 Okamoto T, Schlegel A, Scherer PE, Lisanti MP: Caveolin, a family of scaffolding proteins for organizing 'preassembled signaling complexes'at the plasma membrane. J Biol Chem 273;5419-5422, 1998   DOI   ScienceOn
5 Ushio-Fukai M, Hilenski L, Santanam N, Becker P, Ma Y, Griendling K, Alexander R: Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterolrich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem 276;48269-48275, 2001   DOI
6 Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC: Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 93;6448-6453, 1996
7 Liu P, Ying Y, Ko YG, Anderson RG: Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J Biol Chem 271;10299-10303, 1996   DOI
8 Nomura R, Fujimoto T: Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol Biol Cell 10;975-986, 1999   DOI
9 Sandell LJ, Aigner I: Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3;107-113, 2001   DOI
10 Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T: Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271;22810-22814, 1996   DOI   ScienceOn
11 Oh, CD, Chang SH, Yoon YM, Lee SJ, Lee YS, Kang SS, Chun JS: Opposing role of mitogen-activated protein kinase subtypes, Erk-1/-2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem 275;5613-5619, 2000   DOI   ScienceOn
12 Corley Mastick C, Sanguinetti AR, Knesek JH, Mastick GS, Newcomb LF: Caveolin-1 and a 29-kDa caveolin-associated protein are phosphorylated on tyrosine in cells expressing a temperature-sensitive v-Abl kinase. Exp Cell Res 266;142-154, 2001   DOI   ScienceOn
13 Solursh M: Differentiation of cartilage and bone. Curr OpinCell Biol 1;989-994, 1989   DOI   ScienceOn
14 Michel JB, Feron O, Sase K, Prabhakar P, Michel T: Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem 272;25907- 25912, 1997   DOI   ScienceOn
15 Koon YM, Kim SJ, Oh CD, Ju JW, Song WK, Yoo YJ, Huh TL, Chun JS: Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J Biol Chem 277;8412-8420, 2002   DOI   ScienceOn
16 Glenny JR Jr: Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264;20163-20166, 1989
17 Li S, Okamoto T, Chun M, Sagicomo M, Casanova JE, Hansen SH, Nishimoto I, Lisnti MP: Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270;15693-15701, 1995   DOI   ScienceOn
18 Oh P, Schnitzer JE: Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 12;685-698, 2001   DOI
19 Kim SJ, Hwang SG, Kim IC, Chun JS: Actin cytoskeletal architecture regulates nitric-oxide-induced apoptosis, dedifferentiation, and cyclooxygenase-2 exprssion in articular chondrocytes via mitogen-activated protein kinase and protei nkinase C pathways. J Biol Chem 278;42448-42456, 2003   DOI   ScienceOn
20 Kim SJ, Kim HG, Oh CD, Hwang SG, Song WK, Yoo YJ, Kang SS, Chun JS: p38 kinase-dependent and -independent inhibition of protein kinase C zeta and alpha regulates nitricoxide- induced apoptosis and dedifferentiation of articular chondrocytes. J Biol Chem 277;30375-30381, 2002   DOI   ScienceOn
21 Mastick CC, Brady MJ, Saltiel AR: Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol 129;1523-1531, 1995   DOI   ScienceOn
22 Hauselman HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB, Kuettner KE, Thonar JMA: Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107;17-27, 1994
23 Mastick CC, Saltiel AR: Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem 272;20706-20714, 1997   DOI   ScienceOn
24 Glenny JR, Zokas L: Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol 108;2401-2408, 1989   DOI   ScienceOn
25 Amin AR, Attur M, Abramson SB: Nitric oxide synthase and cyclooxygenases: distribution regulation and intervention in arthritis. Curr Opin Rheumatol 11;202-209, 1999   DOI
26 Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP: Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271;9690-9697, 1996   DOI
27 Ko YG, Liu P, Pathak RK, Craig LC, Anderson RGW: Early effects of pp60(v-src) kinase activation on caveolae. J Cell Biochem 71;524-535, 1998   DOI   ScienceOn
28 Li S, Couet J, Lisanti MP: Src tyrosine kinases, G-alpha subunits, and H-Ras shear a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271;29182-29190, 1996   DOI   ScienceOn
29 Amin AR, Abramson SB: The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 10;263-268, 1998   DOI
30 Kim SJ, Ju JW, Oh CD, Yoon YM, Song WK, Kim JH, Yoo YJ, Bang OS, Kang SS, Chun JS: ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J Biol Chem 277;1332-1339, 2002   DOI   ScienceOn
31 Arbramson SB, Attur M, Amin AR, Clancy R: Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr Rheumatol Rep 3;535-541, 2001   DOI   ScienceOn
32 Archer CW, McDowell J, Baileys MT, Stephens MD, Bentley G: Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J Cell Sci 97;361-371, 1990
33 Volonte D, Galbiati F, Pestell RG, Lisanti MP: Cellular stress induces the tyrosine phosphorylation of caveolin-1 [Tyr(14)] via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J Biol Chem 276;8094-8103, 2001   DOI   ScienceOn