Although many methods of knowledge acquisition has been developed in the exper systems field, such a need form causal knowledge acquisition hs not been stressed relatively. In this respect, this paper is aimed at suggesting a causal knowledge acquisition process, and then investigate the causal knowledge-based inference process. A vehicle for causal knowledge acquisition is FCM (Fuzzy Cognitive Map), a fuzzy signed digraph with causal relationships between concept variables found in a specific application domain. Although FCM has a plenty of generic properties for causal knowledge acquisition, it needs some theoretical improvement for acquiring a more refined causal knowledge. In this sense, we refine fuzzy implications of FCM by proposing fuzzy causal relationship and fuzzy partially causal relationship. To test the validity of our proposed approach, we prototyped a causal knowledge-driven inference engine named CAKES and then experimented with some illustrative examples.
Although many methods of knowledge acquisition has been developed in the expert systems field, such a need for causal knowledge acquisition has not been stressed relatively. In this respect, this paper is aimed at suggesting a causal knowledge acquisition process, and then investigate the causal knowledge-based inference process. A vehicle for causal knowledge acquisition is FCM (Fuzzy Cognitive Map), a fuzzy signed digraph with causal relationships between concept variables found in a specific application domain. Although FCM has a plenty of generic properties for causal knowledge acquisition, it needs some theoretical improvement for acquiring a more refined causal knowledge. In this sense, we refine fuzzy implications of FCM by proposing fuzzy implications of FCM by proposing fuzzy causal relationship and fuzzy partially causal relationship. To test the validity of our proposed approcach, we prototyped a causal knowledge-driven inference engine named CAKES and then experime ted with some illustrative examples.
Due to the increasing use of very large databases, mining useful information and implicit knowledge from databases is evolving. However, most conventional data mining algorithms identify the relationship among features using binary values (TRUE/FALSE or 0/1) and find simple If-THEN rules at a single concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen in real-world database and applications. In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal knowledge base form database. Acausal knowledge base construction algorithm based on Fuzzy Cognitive Map(FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to achieve this purpose. The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstration the effectiveness of the proposed algorithm.
The objectives of this paper are to apply fuzzy cognitive map (FCM)- related techniques to (1) extract causal knowledge from a specific problem-domain and (2) perform a series of causal analysis in complicated decision making area. We propose a set operation-based augmentation (SOBA) algorithm to combine multiple FCMs developed by multiple experts. Based on the SOBA knowledge acquisition algorithm, we can obtain a causal knowledge base fairly representing multiple experts' knowledge about a problem domain. The causal knowledge base built by SOBA algorithm can be described as a matrix form, guaranteeing mathematically compact operation compared with a production (if-then) knowledge base. We applied out method to stock market analysis problem whichis a typical of highly unstructured problems in OR/MS fields.
The paper proposes a quantitative causal ordering map (QCOM) to combine qualitative and quantitative methods in a framework. The procedures for developing QCOM consist of three phases. The first phase is to collect partially known causal dependencies from experts and to convert them into relations and causal nodes of a model graph. The second phase is to find the global causal structure by tracing causality among relation and causal nodes and to represent it in causal ordering graph with signed coefficient. Causal ordering graph is converted into QCOM by assigning regression coefficient estimated from path analysis in the third phase. Experiments with the prediction model of Korea stock price show results as following; First, the QCOM can support the design of qualitative and quantitative model by finding the global causal structure from partially known causal dependencies. Second, the QCOM can be used as an integration tool of qualitative and quantitative model to offerhigher explanatory capability and quantitative measurability. The QCOM with static and dynamic analysis is applied to investigate the changes in factors involved in the model at present as well discrete times in the future.
Journal of Advanced Marine Engineering and Technology
/
제20권1호
/
pp.13-23
/
1996
Weld defects degrade the strength and safety of astructure and are resulted from the various cases. The complexity of causal relation of weld defects requires an expert for the analysis of weld defects and the measures counter to them. An expert system has the intelligent functions such as the representation of knowledge and the inference. On this research, weld defect are systematically analysed and their causal model is developed. This information is saved to the knowledge base. The suitable inference algorithm for the diagnosis of weld defects is developed and realized with C++ programming.
본 논문에서는 인과관계 지식의 표현과 추론에 가장 대표적으로 사용되는 퍼지인식도(FCM, Fuzzy Cognitive Map)와 베이지안 신뢰 네트워크(BBN, Bayesian Belief Network)를 구조적으로 분석한다. 퍼지인식도와 베이지안 신뢰 네트워크는 의사 결정을 지원하는데 중요한 인과관계 지식을 표현하고 추론하는데 사용되는 가장 대표적인 프레임워크이지만 인과관계 지식응용 영역에서 두 프레임워크의 역할에 대한 구조적 비교 연구는 이루어지지 않고 있다. 본 논문에서는 두 프레임워크의 구조적 비교를 통해 퍼지인식도와 베이지안 신뢰 네트워크의 중요한 특징들을 추출하고, 이를 통해 인과 지식 공학에서 어떻게 퍼지 인식도와 베이지안 신뢰 네트워크가 이용되어야 하는지를 보인다. 인과관계 지식의 표현과 추론의 과정을 평가하는데 비교 평가를 위한 항목으로서 본 논문에서는 사용성, 표현력, 추론능력, 정형화와 완결성이 사용되었다.
This study aimed to investigate the role of domain-specific causal mechanism information and domain-general conditional probability in young children's causal reasoning on psychology and biology. Participants were 121 3-year-olds and 121 4-year-olds recruited from seven childcare centers in Seoul, Kyonggi Province, and Busan. After participants watched moving pictures on psychological and biological phenomena, they were asked to choose appropriate cause and justify their choices. Results of this study were as follows: First, young children made different inferences according to domain-specific causal mechanisms. Second, the developmental level of causal mechanisms has a gap between psychology and biology, and biological knowledge was proved to be separate from psychological knowledge during the preschool period. Third, young children's causal reasoning was different depending on the interaction effect of domain-specific mechanisms and domain-general conditional probability: children could make more inferences based on domain-specific causal mechanisms if conditional probability between domain-appropriate cause and effect was evident. To conclude, it can be inferred that the role of domain-specific causal mechanisms and domain-general conditional probability is not competitive but complementary in young children's causal reasoning.
한국경영과학회 1999년도 추계학술대회 및 정기총회 : 정보통신기술의 활용과 21세기 전자상거래
/
pp.42-46
/
1999
Knowledge management(KM) is emerging as a robust management mechanism with which an organization can remain highly intelligent and competitive in a turbulent market. Organization memory(or knowledge) is at the heart of KM success. How to create organizational memory has been debated among researchers. In literature, a wide variety of methods for creating organizational memory have been proposed only to prove that its applicability is limited to decision-making problems which require shallow or non-causal knowledge type. However, organizational memory with a sense of causal knowledge is highly required in solving complicated decision-making problems in which complex dynamics exist between various factors and influence each other with cause and effect relationship among them. In this respect, we propose a new approach to creating a causal-typed organizational memory (CATOM), which has a form of causal knowledge and is represented in a matrix form, by using an inference diagram. An algorithm for CATOM creation is suggested and applied to an illustrative example. Results show that our proposed KM approach can effectively equip an organization with semi-automated CATOM creation and inference process which is deemed useful in a highly competitive business environment.
The purpose of this study was to investigate the levels of knowledge and behavior towards food hygiene among child consumers, examine the factors influencing them, and analyze the causal relationship between them. The data were collected from 521 elementary school students in Youngnam area by a self-administered questionnaire. Frequencies, Pearson's correlation analysis, multiple regression analyses, and path analysis were conducted by SPSS Windows. The results from this study were as follows. First, the level of knowledge towards food hygiene was not particularly high, and the level of behavior was somewhat more than the average. Second, the factors influencing the level of knowledge towards food hygiene were school record (upper and middle), and concerns about food hygiene. In addition, concerns about food hygiene, the frequency of food hygiene education in the family, and the level of knowledge towards food hygiene had an effect on the level of behavior towards food hygiene. Third, in the analysis of the causal relationship between the knowledge and behavior towards food hygiene, school record indirectly influenced the behavior towards food hygiene, and the frequency of food hygiene education in the family directly affected the behavior towards food hygiene. On the other hand, concerns about food hygiene had direct and indirect influence on the behavior towards food hygiene. In addition, the knowledge towards food hygiene showed a direct effect on the behavior towards food hygiene. These results imply that knowledge towards food hygiene is a very important factor to improve the children's behavior towards food hygiene and that parents' concerns and guidance for children are needed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.