• Title/Summary/Keyword: Cattail

Search Result 33, Processing Time 0.019 seconds

Sugar Extraction by Pretreatment and Soda Pulping from Cattail (Typhaceae) (2) Pulping Characteristics (부들의 전처리를 통한 당의 추출과 소다펄프화에 관한 연구 (2) 펄프화 특성)

  • Kim, Wan-Jung;Lee, Sung-Eun;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.14-21
    • /
    • 2010
  • Three different species of cattails (Typha orientalis, Typha angustata, Typha latifolia) cultivated in South Korea were examined as raw materials for the production of pulp and paper. Soda pulping with anthraquinone was used for the stems and the leaves of cattail, separately. Addition of anthraquinone in soda pulping improved the yield greatly. Chemical components between three cattail species and within each species (leaves and stem) gave little differences. Average fiber length of the bleached cattail fibers was a little shorter than that of the HwBKP of Eucalyptus. Average fiber width of the cattail fibers was a half of that of the HwBKP. Compared to the HwBKP, cattail pulp gave higher breaking length, higher opacity, and better smoothness at equivalent freeness.

Sugar Extraction by Pretreatment and Soda Pulping From Cattail (Typha latifolia L.) (1) Extraction of Sugar (부들의 전처리를 통한 당의 추출과 소다펄프화에 관한 연구 (1) 당 추출)

  • Lee, Sung-Eun;Kim, Wan-Jung;Son, Mi-Kyung;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.88-94
    • /
    • 2010
  • Cattail (Typha L.) was used as a raw material for producing both bio-ethanol and pulp for papermaking at the same time. Pretreatments of cattail stems and leaves with acid ($H_2SO_4$) and alkali (NaOH) in three different addition levels were studied before soda pulping. The acid pretreatment gave reducing sugar of 15.2% of initial weight, but alkali pretreatment close to 1%. Soda pulping of the pretreated cattail gave 3% reduction in pulp yield and less bonding properties in paper; however, refining of the pulp from the pretreated cattail with alkali restored their fiber bondings up to that of the pulp from no-pretreated cattail at equivalent freeness.

Comparison of Nitrogen Removal Between Reed and Cattail Wetland Cells in a Treatment Pond System (갈대 및 부들 습지셀의 연못시스템 방류수 질소제거 비교)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.234-239
    • /
    • 2004
  • [ $NO_3$ ]-N and T-N removal rates of cattail wetland cells were compared with those of reed wetland cells. The examined cells were a part of a pond-wetland system composed of two ponds in series and six wetland cells in parallel. Each wetland cell was 25m in length and 6m in width. Cattails (Typha angustifolia) were transplanted into three cells and reeds Phragmites australis) into another three ones in June 2000. Water of Sinyang stream flowing into Kohung Estuarine lake located in the southern part of the Korean Peninsula was pumped into the primary pond, its effluent was discharged into the secondary pond Effluent from the secondary pond was funneled into each cell. Two cattail and reed cells were chosen for this research. Water quantity and quality of influnt and effluent were analyzed front May 2001 through October 2001. The volume of influent and effluent of the cells averaged about $20.0\;m^3/day$ and $19.3\;m^3/day$, respectively. Hydraulic retention time was approximately 1.5 days. Influent $NO_3$-N concentration for the four cells averaged 2.39 mg/L. Effluent $NO_3$-N concentration far the cattail and reed cells averaged 1.74 and 1.78 mg/L, respectively. Average $NO_3$-N retention rate for the cattail and reed cells by mass was 30 and 29%, respectively. Influent T-N concentration far the four cells averaged 4.13 mg/L. Effluent T-N concentration for the cattail and reed cells averaged 2.55 and 2.61 mgL respectively. Average T-N retention rate for the cattail and reed cells by mass was 39 and 38%, respectively. $NO_3$-N and T-N concentrations in effluent from the cattail cells were significantly low (p=0.04), compared with those from the reed cells. Cattail wetland cells were more efficient for $NO_3$-N and T-N abatement than reed ones.

Effects of Cattail Pollen Powders on the Rheology of Dough and Processing Adaptability of White Pan Bread (부들화분을 첨가한 밀가루 반죽의 물성과 제빵 적성)

  • Lee, Bung-Chan;Joung, Yong-Myeon;Hwang, Seong-Yun;Lee, Jong-Hwa;Oh, Man-Jin
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.525-533
    • /
    • 2009
  • To explore cattail pollen powder as a functional food ingredient, we analyzed the general components of pollen powder, tested changes in the physical properties of dough containing the powder, and investigated the process ability of powder-containing dough in bread making by adding 3%, 6%, or 9% by weight of pollen powder to wheat flour. Cattail pollen powder consisted of (all w/w) 12.7-13.2% water, 15.7-17.8% crude protein, 1.3% crude fat, 7.5-7.7% free sugar, 14.7-18.6% crude fiber, 3.4-4.9% pollen, and 49.7-55.9% soluble nitrogen-free extract (NFE). Analysis of the physical properties of dough mixed with pollen powder showed that as more pollen powder was added, the absorption rate increased, but dough stability decreased. With increasing levels of cattail pollen powder, the falling number decreased, and amylase activity increased. Fermentability was highest in dough made with 3% by weight of pollen powder, and the bread product made from such dough had the greatest volume. As more cattail pollen powder was added, the moisture activity in dough tended to decrease to a greater extent than seen in control dough, and this tendency increased with time. We found that longer storage periods were associated with greater hardness and springiness, which indicated degradation in product quality. Therefore, it is suggested that bread products containing cattail pollen powder should be consumed within 3 days of preparation. In a taste survey, bread baked with 3% (w/w) cattail pollen powder scored highest in all questionnaire items.

Biological Activity and Chemical Analysis of Cattail Pollens (포황(蒲黃)의 성분분석과 생리활성)

  • Lee, Bung-Chan;Park, Hae-Min;Sim, Hu-Sung;Kim, Gon-Sup;Gu, Ja-Hyeong;Oh, Man-jin
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.185-197
    • /
    • 2009
  • For utilizing Cattail pollen as a raw material for functional foods, the nutrients such as free sugar, free amino acid, fatty acid composition, flavonoid content, and the biological activity within Cattail pollen were measured. The results of proximate analysis within Cattail pollen included the following readings: 12.7-13.2% of moisture, 15.7-17.8% of crude protein, 1.3% of crude fat, 7.5-7.7% of free sugar, 13.7-18.6% of crude fiber, 3.4-4.9% of ash, and 49.7-55.9% of nitrogen free extracts. The composition of free amino acids consisted of 1.923% of T. orientalis, 0.907% of T. angustata, and 0.333% of T. latifolia, which were measurements that varied significantly among different species. However, all species showed considerable portions of GABA alanine, glutamic acid, and proline. Specifically, it was shown that the GABA composition, which is known for increasing immunity while simultaneously lowering blood pressure, exceeded 50%. Therefore, this result implies that Cattail pollens have potential as a powerful utilization for functional foods. The composition of the fatty acids mainly consisted of linoeic, palmitic acid, oleic acid, and linolenic acid, and didn't show many variances across different species. Also, the total contents of unsaturated fatty acid were particularly high with a measured ratio of 67.2-76.0% value. Mineral in Cattail pollen was composed of 0.354-0.492% of K, 0.0516-0.0546% of Mg, 0.045-0.0486% of Ca, and 0.0101-0.0204% of Na. Among the Cattail pollens known as anti-oxidants, flavonoid contains 0.169-0.186% of quercetin, and therefore is the largest constituent followed by rutin making up a measurement of 0.0094-0.0147%. For the purpose of the study, the Cattail pollen and its extracts were fed to SC class rats for a span of 4 weeks. Then, the DPPH radical scavenging activity was measured from the tested rats'serums and the results showed significant variances. Also, the results indicated that the cholesterol and glucose levels in the blood were decreased which in turn led to the conclusion that the cattail pollen can help hyperlipidemia and diabetic treatments.

  • PDF

Salt and NH$_4^+$-N Tolerance of Emergent Plants for Constructed Wetlands (정수식물의 내염성 및 NH$_4$^+$-N 흡수제거능 평가)

  • 이충일;곽영세
    • The Korean Journal of Ecology
    • /
    • v.23 no.1
    • /
    • pp.45-49
    • /
    • 2000
  • Tolerances of aquatic plants (emergent plants) of cattail (Typha orientalis), water oats (Zizania latifolia), reed (Phragmites communis), and bulrush (Scirpus nipponicus) to salts and high NH₄/sup +/-N cone. of industrial wastewater were evaluated. Evapotranspiration of cattail and water oats plants was not affected when the wastewater containing 130 ppm NH₄/sup +/-N with electrical conductivity of 3.0 dS/m was supplied for 5 months. Shoot and root dry wt. of cattail and water oats were rather increased by irrigation of the wastewater while the biomass production of bulrush was greatly reduced. Storage nitrogen concentration in tissues of water oats and reed plants were higher than those in cattail and bulrush. Thus, water oats and reed plants were found to be the better aquatic plants to use in constructed wetlands for treating industrial wastewater of high salt and NH₄/sup +/-N.

  • PDF

Effects of Plant on Pollutant Removal Rate n Surface-flow Constructed Wetlands (자유수면형 인공습지에서 식물식재 유무가 처리효율에 미치는 영향)

  • Ham, Jong-Hwa;Kim, Hyung-Joong;Kim, Dong-Hwan;Hong, Dae-Byuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • Three different types of wetlands (unplanted wetland, reed planted wetland, cattail planted wetland) were constructed at the mouth of Seokmoon reservoir with 910 $m^2$ each to examine the effects of wetland plant on pollutant removal rate in constructed wetland, and operated for 9 years (2002~2010). Water depth of the wetland was maintained at 0.3~0.5 m, flow rate was about 40~200 $m^3$/day, and retention time was managed at about 1~5 days. There was no difference in removal rate of SS, TN, and TP between reed wetland and cattail wetland. Removal rate of SS and TN in planted wetland with reed and cattail were higher than unplanted wetland, whereas removal rate of TP in unplanted wetland was higher then planted wetland. The monthly variation of removal rate in planted wetlands was high compared with unplanted wetland. From the long term monitoring results, SS and TN removal rates of period3 (2008~2010) were higher than period1 (2002~2004) in planted wetland, whereas TP removal rate was decreased as time goes on. Overall, pollutant removal rate in constructed wetland was more influenced by existence of plants than by plant species. Although constructed wetland is operated long term period, SS, TN, and TP removal rate (SS 90 %, TN 60 %, TP 40 %) can be maintained high values.

Assessment of genetic diversity of Typha angustifolia in the development of cattail stands

  • Min, So-Jung;Kim, Heung-Tae;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.35 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • Typha angustifolia has ecological characteristics of clonal growth similar to Phragmites australis. The plant spreads byclonal growth and seed dispersal. In this study, for the three stands which have different settlement age at the Baksilji wetland in Korea, genetic diversity was estimated by random amplification of polymorphic DNA analysis to evaluate the change in genetic diversity of T. angustifolia during stand development in the same population. Stand (ST) 1 was the oldest and ST 4 was the youngest. ST 5 was in a small ditch out of the Baksilji. Although the ST 1, ST 2, and ST 3 did not differ significantly in vegetational or physical environment, the genetic diversity estimated according to Nei's gene diversity (h) and the Shannon index (i) increased in the order of ST 1 < ST 2 < ST 3 contrary to formative age. The genetic diversity of ST 4 was much higher than that of the other three stands. ST 4 has similar abiotic environmental conditions with slight T. angustifolia dominance, and seems to be in the early establishment stage. ST 5 differed from the other stands in vegetational and soil environments, which can result in stressful cattail conditions. Even though the ST 5 stand was not younger than the ST 4 stand, ST 5 showed the highest genetic diversity. Our results indicate that after early settlement of the T. angustifolia population, genetic diversity within the species decreased over time and that the decreasing pattern of genetic diversity within T. angustifolia stands is not likely to occur under stressful conditions.

Nitrate Removal of a Cattail Wetland Cell Purifying Effluent from a Secondary-Level Treatment Plant During Its Initial Operating Stage (2차처리장 방류수 정화 부들습지셀의 초기운영단계 질산성질소 제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2004
  • Nitrate removal was examined from May to October 2003 of a surface flow treatment wetland cell, which was a part of a treatment wetland system composed of four wetland cells and a distribution pond The system was established on rice paddy near the Kohung Estuarine Lake located in the southern part of the Korean Peninsula. Effluent from a secondary-level night soil treatment plant was funneled into the system. The investigated cell, 87 m in length and 14 m in width, was created in April 2003. An open water was designed at its center, which was equivalent to 10 percent of its total area. Cattails (Typha angustifolia) were transplanted from natural wetlands into the cell and their stems were cut at about 40cm height from their bottom ends. Average $25.0\;m^3/day$ of effluent from the treatment plant was funneled into the cell by gravity flow and average $24.1\;m^3/day$ of its treated effluent was discharged into the Sinyang Stream flowing into the lake. Its water depth was maintained about 0.2 m and its hydraulic detention time averaged 5.2 days. Average height of the cattail stems was 42.5 cm in May 2M3 and 117.7 cm in September 2003. The number of stems averaged $9.5\;stems/m^2$ in May 2003 and $16.4\;stems/m^2$ in September 2003. The growth of cattails was good. Temperature of influent and effluent averaged 25.9 and $26.7^{\circ}C$, respectively. $NO_3$-N loading rate of influent and effluent averaged 176.67 and $88.09\;mg/m^2\;day$, respectively. Removal of rf03-N averaged $89.58\;mg/m^2\;day$ and its removal rate by mass was about 50%. Considering its initial operating stage in which cattail rhizomes and litter layer on the bottom were not Idly established, the $NO_3$-N removal rate of the cell was rather good.