• Title/Summary/Keyword: Cationic polymerization

Search Result 108, Processing Time 0.03 seconds

계산화학적 방법을 이용한 Triphenylsulfonium 양이온의 해리 반응 기작 연구

  • Hwang, In-Seung;Kim, Jong-Beom;Kim, Jae-Uk;Hong, Gwang-U;Kim, U-Yeon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.1-7
    • /
    • 2016
  • Triphenylsulfonium 양이온(TPS)은 잘 알려진 광산 생성자(photoacid generator, PAG)중 하나로 양이온성 중합반응(cationic polymerization)의 개시제로 널리 사용됐으며, 유기발광다이오드의 활성층, 폴리머 발광다이오드의 전자주입층을 구성하는 재료로도 사용되고 있다. TPS는 200nm 주변의 빛을 흡수하면 탄소-황 결합이 끊어져 페닐 라디칼과 diphenylsulfonium 양이온 라디칼로 분해되는 것이 알려져 있다. 본 연구에서는 밀도범함수이론과 시간의존 밀도범함수이론을 이용 triphenylsulfonium 이온의 광학적 특성을 조사하였다. 가장 안정한 구조를 기준으로 자외선 흡광 스펙트럼을 계산하였고, 실험값에 잘 맞는 것을 확인하였다. TPS의 빛에 의한 해리 과정을 알아보기 위해 페닐-황 결합 길이를 변화시키며 TPS의 흡광 스펙트럼을 계산, 여기상태 포텐셜 에너지 곡선을 구할 수 있었다. 결합의 분해에 이용되는 상태들은 주로 점유 분자 오비탈에서 최저준위 비점유 분자 오비탈(LUMO)로 들뜨는 성분을 가지고 있었는데, 이는 LUMO가 반결합성 오비탈이기 때문이다.

  • PDF

Ring-Opening Polymerization of Substituted 3,4-Dihydro-2H-pyrans. Syntheses of Alternating Vinyl Copolymers of Dimethyl Dicyanofumarate and Electron-Rich Olefins

  • Lee, Ju-Yeon;Cho, I-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.372-376
    • /
    • 1986
  • Substituted 3,4-dihydro-2H-pyrans ($1_{a-e}$) were prepared by (4 + 2) cycloaddition reaction of dimethyl dicyanofumarate with the corresponding electron-rich olefins. The compounds $1_{a-e}$ were ring-open polymerized by cationic initiators to obtain polymers of 1:1 alternating sequence. Polymerizations were carried out with boron trifluoride etherate in methylene chloride at $-78^{\circ}C$. All the polymers obtained were soluble in common solvents and were reprecipitated by pouring its chloroform solution into diethyl ether. All the compounds $1_{a-e}$ were not as reactive as the corresponding pyrans derived from ${\alpha}$ -cyanoacrylate.

Synthesis of Alternating Head-to-Head Copolymer of Methyl $\alpha$-cyanoacrylate and 2,3-Dihydrofuran. Ring-Opening Polymerization of 3-Methoxy-4-cyano-2,9-dioxabicyclo[4.3.0]non-3-ene

  • Lee, Ju-Yeon;Cho, I-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.176-179
    • /
    • 1988
  • 3-Methoxy-4-cyano-2,9-dioxabicyclo[4.3.0]non-3-e ne (1) was prepared by (4 + 2) cycloaddition reaction of methyl ${\alpha}$-cyanoacrylate with 2,3-dihydrofuran. Compound 1 was ring-open polymerized by cationic catalyst such as boron trifluoride etherate to obtain alternating head-to-head (H-H) copolymer (2) of methyl $\alpha$ -cyanoacrylate and 2,3-dihydrofuran. For comparison, head-to-tail (H-T) copolymer (3) was also prepared by free radical copolymerization of the corresponding monomers. The H-H copolymer exhibited minor differences in its $^1H$-NMR and IR spectra, but in the $^{13}C$-NMR spectra significant differences were observed between the H-H and H-T copolymers. All of the H-H and H-T copolymers were soluble in common solvents and the inherent viscosities were in the range 0.2-0.3 dl/g.

Poly(Ethylene Glycol)-branched Polyethylenimine-poly(L-phenylalanine) Block Copolymer Synthesized by Multi-initiation Method for Formation of More Stable Polyelectrolyte Complex with Biotherapeutic Drugs

  • Park, Woo-Ram;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • An amphiphilic cationic branched methoxy poly (ethylene glycol)-branched polyethylenimine - poly(L-phenylalanine) (mPEG-bPEI-pPhe) block copolymer was successfully synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of L-phenylalanine (Phe-NCA) with mPEG-bPEI for the preparation of more stable polyelectrolyte complex (PEC) included a hydrophobic interaction. mPEG-bPEI was firstly prepared by the coupling of mPEG and bPEI using hexamethylene diisocyanate (HMDI). The structural properties of mPEG-bPEI-pPhe copolymers were confirmed by $^1H$ NMR. The copolymers exhibited a self-assemble behavior in water above critical aggregate concentration (CAC) in the range of 0.01-0.14 g/L. The CAC of copolymers obviously depended on the hydrophobic block content in the copolymers (the value decreased with the increase of the pPhe block content). The cationic copolymers have the ability to form multi-interaction complex (MIC) with bovine serum albumin (BSA) and plasmid DNA through multi-interaction (electrostatic and hydrophobic interaction). The physicochemical characterization of the complex was carried out by the measurement of zeta potential and particle size. Their zeta-potentials were positive (approximately +10 mV) and their sizes decreased with increasing pPhe contents in the copolymers (PPF/BSA wt% ratio = 2). The complex showed good stability at high ionic strength. Therefore, mPEG-bPEI-pPhe block copolymer was considered as a potential material to enhance the stability of complex including biotherapuetic drugs.

Poly(L-lysine) Based Semi-interpenetrating Polymer Network as pH-responsive Hydrogel for Controlled Release of a Model Protein Drug Streptokinase

  • Park, Yoon-Jeong;Jin Chang;Chen, Pen-Chung;Victor Chi-Min Yang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.326-331
    • /
    • 2001
  • With the aim of developing of pH-sensitive controlled drug release system, a poly(Llysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.

  • PDF

Vinyl Addition Copolymerization of Norbornene/5-Vinyl-2-norbornene with Cationic $\eta^{3_}$-Allyl Palladium Catalyst and Their Post-Reaction (양이온성 $\eta^{3_}$알릴 팔라듐 촉매를 사용한 노보넨/5-비닐-2-노보넨의 비닐 부가 공중합과 이를 이용한 고분자 후반응)

  • 안재철;박수현;이광희;박기홍
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.429-435
    • /
    • 2003
  • Vinyl addition copolymerizations of norbornene (NB) and 5-vinyl-2-norbomene (VNB) were carried out using a cationic η$^3$-allyl palladium catalyst in the various mole ratio of comonomers. The copolymers could be obtained in good yield (65∼85%) with high weight-average molecular weights (M$_{w}$ > 760,000). Depending on increasing VNB contents, the molecular weight and yield of the copolymers decreased. FT-IR analysis confirmed that actual contents of VNB in polymer were proportional to the feeding content of VNB. From $^1$H-NMR spectroscopy, we found that both exo and endo VNB isomer were copolymerized with NB. Thermal stabilities of NB-VNB copolymers were independent on the VNB content and their initial decomposition temperatures were about 300 C. The NB-VNB copolymers were followed by epoxidation by using m-CPBA and hydroxylation by 9-BBN, respectively, and these post-polymers were characterized by FT-IR spectroscopy and $^1$H-NMR analysis..

Synthesis, Characterization and Haemocompatibility of Poly(styrene-b-isobutylene-b-styrene) Triblock Copolymers (폴리(스티렌-이소부틸렌-스티렌) 삼중블록 공중합체의 합성, 분석 및 혈액적합성)

  • Ren, Ping;Wu, Yi-Bo;Guo, Wen-Ii;Li, Shu-Xin;Mao, Jing;Xiao, Fei;Li, Kang
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • The synthesis of well-defined poly(styrene-b-isobutylene-b-styrene) (SIBS) triblock copolymers was accomplished by cationic sequential block copolymerization of isobutylene (IB) with styrene (St) using 1,4-di(2-chloro-2-propyl) benzene (DCC) /$TiCl_4$/2,6-di-tert-butylpyridine(DtBP) as an initiating system in methyl chloride ($CH_3Cl$)/methylcyclohexane(MeChx) (50/50 v/v) solvent mixture at $-80^{\circ}C$. The triblock copolymers exhibited excellent thermoplastic and elastomeric characteristics. Tensile strengths and Shore hardness increased with increasing polystyrene (PS) content, while elongation at break decreased. The blood-compatibility of SIBS was assessed by SEM observation of the platelet adhesion, blood clotting time and haemolysis ratio. The haemolysis ratios were below 5% which met the medical materials standard. The platelet adhesion test further indicated that SIBS block copolymers had a good blood compatibility.

Synthesis of Sulfonated Poly(styrene-co-DVB) Hyper Branched Cationic Exchange Resin and Its Properties (하이퍼브랜치 Poly(styrene-co-DVB) 설폰화 양이온교환 수지의 합성 및 특성)

  • Baek, Ki-Wan;Yeom, Bong-Yeol;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • In this study, the hyper branched poly (styrene-co-divinylbenzene) (PSD) was synthesized by bulk polymerization and the cationic exchanger with high ion exchange capacity was prepared by sulfonation. The structure of hyper branched PSD ion exchanger was investigated by FT-IR, $^1H-NMR$ spectroscopy, and GPC analysis. The molecular weight, viscosity of hyper branched PSD increased with DVB content, which have the maximum values of 9410g/mol and 338 cP, respectively. And the reaction rate also increased with cross-linker content. As DVB content increased, the solubility of PSD decreased having the maximum value of 22 g with 0.1 mol% DVB. The water content and ion exchange capacity of the hyper branched PSD ion exchanger increased with the amount of sulfuric group. Their maximum values were 18.2% and 4.6 meq/g, respectively. The adsorption of copper and nickel ion was completed within 40 min.

Synthesis of Polymerizable Amphiphiles with Basic Oligopeptides for Gene Delivery Application (염기성 올리고펩티드 유도체를 가진 고분자 리피드의 합성 및 유전자 전달 효과 연구)

  • Bae, Seon Joo;Choi, Hye;Choi, Joon Sig
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.94-99
    • /
    • 2013
  • Polydiacetylene (PDA) is made by photopolymerization of self-assembled diacetylene monomers. If diacetylene monomers are arranged systematically and close enough with distance of atoms, 1,4-addition polymerization will occur by the irradiation of 254 nm ultraviolet rays and then PDA will have alternated ene-yne polymer chains at the main structure. Aqueous solutions of diffused PDA is tinged with blue which shows ${\lambda}_{max}$ 640 nm. Visible color changes from blue to red occurs in response to a variety of environmental perturbations, such as temperature, pH, and ligand-receptor interactions. In this study, we synthesized cationic peptides - PCDA(10,12-pentacosadyinoic acid) liposome using a solid phase peptide synthesis (SPPS) method and prepared liposome solutions at various molar ratios using MPEG-PCDA. When mammalian cells were treated with the liposomes, high transfection efficiency and low toxicity were observed.

Syntheses of Alternating Head-to Head Vinyl Copolymers and Vinyl Terpolymers via Ring-Opening Mechanism. Ring-Opening Polymerization of Substituted-3,4-dihydro-2H-pyrans

  • Lee, Ju-Yeon;Cho, I-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.96-101
    • /
    • 1987
  • 2-Ethoxy-6-methoxy-5-cyano-3,4-dihydro-2H-pyran (1_a$), 2-n-butoxy-6-methoxy-5-cyano-3,4-dihydro-2H-pyr an (1b), 2-isobutoxy-6-methoxy-5-cyano-3,4-dihydro-2H-py ran ($1_c$), and 2-ethoxy-6-methoxy-3-methyl-5-cyano-3,4-dihydro -2H-pyran ($1_d$) were prepared by (4 + 2) cycloaddition reaction of methyl $\alpha$-cyanoacrylate with the corresponding alkyl vinyl ethers. Compounds $1_{a-d}$ were ring-open polymerized by cationic catalyst to obtain alternating head-to-head (H-H) copolymers. For comparison, head-to-tail (H-T) copolymer $3_a$ was also prepared by free radical copolymerization of the corresponding monomers. The H-H copolymer exhibited minor differences in its $1_H% NMR and IR spectra, but in the $^{13}C$ NMR spectra significant differences were observed between the H-H and H-T copolymers. Glass transition temperature ($T_g$) of H-H copolymer was higher than that of the H-T copolymer, but thermal decomposition temperature of the H-H copolymer was lower than that of the H-T copolymer. Compounds $1_a$, $a_b$, and $1_c$, copolymerized well with styrene by cationic catalyst, but compound 1d failed to copolymerize with styrene. All of the H-H and H-T copolymers were soluble in common solvents and the inherent viscosities were in the range 0.2-0.4 dl/g.