• 제목/요약/키워드: Cation exchange resin

검색결과 159건 처리시간 0.022초

Preparation of Cation-exchange Resin from Lignin

  • Kamelt S.
    • 펄프종이기술
    • /
    • 제36권5호
    • /
    • pp.78-84
    • /
    • 2004
  • Lignin precipitated from black liquor of soda pulping of bagasse was used to prepare cation-exchange resin. The effect of sulfuric acid treatment, concentration of phenol and formaldehyde on the properties of the prepared cation-exchange resin was investigated. It was found that sulfonated resinified phenolated lignin gave a resin with an ion-exchange capacity higher than that of resin, which resulted from sulfonation of resinified lignin at zero phenol concentration. Infrared spectroscopy of the prepared ion-exchange resin shows anew bands at 1060, 1160, 1280 and $1330\;cm^{-1}$ which indicated to the presence of $SO_{3}$.

전해질 성분 및 농도, 이온교환 수지 비율에 따른 이온교환 특성 연구 (A Study on Ion Exchange Characteristics with Composition and Concentration of Electrolyte, Ratio of Ion Exchange Resin)

  • 안현경;이인형;윤형준;정현준
    • 한국산학기술학회논문지
    • /
    • 제7권4호
    • /
    • pp.727-732
    • /
    • 2006
  • 본 연구에서는 전해질 성분 및 농도, 이온교환 수지 조성비율을 통해 이온교환 수지탑의 성능을 평가하고, 이온교환 수지에 의한 입자성 물질 제거의 능력과 입자성 물질이 이온교환 특성에 미치는 영향을 조사하였다. 이온교환 수지탑 배열 순서에 따라 파과(돌파)시점이 연장되며, 파과(돌파)순서는 음이온의 경우 $Cl^{-}, 양이온의 경우 $Na^{+} 순 이였으며, 전해질의 농도가 증가할수록 파과시간이 단축되었다. 이온교환 수지의 조성비 변화에서는 양음이온교환 수지 조성비가 1:2의 경우 1:1및 1:3의 경우보다 파과(돌파)시간이 연장되었으며 동일한 전해질 농도에서 입자 농도가 증가하면 20% 미만으로 파과(돌파)시간이 단축되었다. 양이온 교환수지 비율이 높으면 양이온의 파과(돌파)시점이 늦어져 이온교환 수지탑의 수명이 연장되고, 입자성 물질은 전해질 농도와 무관하게 이온교환 수지의 세공을 막아 이온교환 용량을 감소시켜 파과(돌파)시간을 단축시키는 것으로 조사되었다.

  • PDF

양이온 교환수지에 의한 암모니아성 질소 제거 (Ammonia Nitrogen Removal by Cation Exchange Resin)

  • 이동환;이민규
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.263-269
    • /
    • 2002
  • This study was conducted to know the removal characteristics of ammonia nitrogen by commercially available cation exchange resins. Eight acidic cation exchange resins were investigated in batch reactors. Among them, the most effective resin for ammonia removal in solution was PK228, which was a strong acidic resin of $Na^{+}$ type. PK228 was compared with activated carbon and natural zeolite. The effects of cation exchange capacity, ammonia concentration, resin amount, temperature and pH on ammonia removal by PK228 were investigated in batch reactor, and the effect of effluent velocity in continuous column reactor. Strong acidic resins of porous type were more effective than week acidic resins or gel type resins for ammonia removal in solution. PK228 was more effective than activated carbon and natural zeolite for ammonia removal in batch reactor. With increasing initial ammonia concentration, the amount of ammonia removed by PK228 increased, but the proportion of removed ammonia to initial ammonia concentration decreased. The effect or temperature on ammonia removal by PK228 was very slight. The ammonia removal to acidic solution was more effective than that at basic solution. With decreasing effluent velocity of solution through column, breakthrough point extended, and ammonia removal capacity increased.d.

Kinetics and Equilibrium Isotherm Studies for the Aqueous Lithium Recovery by Various Type Ion Exchange Resins

  • Won, Yong Sun;You, Hae-na;Lee, Min-Gyu
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.498-503
    • /
    • 2016
  • The characteristics of aqueous lithium recovery by ion exchange were studied using three commercial cation exchange resins: CMP28 (porous type strong acid exchange resin), SCR-B (gel type strong acid exchange resin) and WK60L (porous type weak acid exchange resin). CMP28 was the most effective material for aqueous lithium recovery; its performance was even enhanced by modifying the cation with $K^+$. A comparison to $Na^+$ and $H^+$ form resins demonstrated that the performance enhancement is reciprocally related to the electronegativity of the cation form. Further kinetic and equilibrium isotherm studies with the $K^+$ form CMP28 showed that aqueous lithium recovery by ion exchange was well fitted with the pseudo-second-order rate equation and the Langmuir isotherm. The maximum ion exchange capacity of aqueous lithium recovery was found to be 14.28 mg/g and the optimal pH was in the region of 4-10.

Evaluation on SGBD demineralizers and Optimized Cation/Anion Resin ratio in PWR NPPs

  • Sung Ki-Bang;Nam Yong-Jae;Lee Jae-Sung
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 추계 학술대회 논문집
    • /
    • pp.79-86
    • /
    • 2005
  • In PSR on the Kori 3&4 NPP, The low level radioactive waste resin from SGBD demineralizer is more than $65\%$ of total waste resin in NPP So, it needs to be improved. The secondary cooling water pH control methods are used ammonia-AVT from the first. According to changing ETA which is better than ammonia, SGBD cation load is increased about 2-3 times. Waste resin product is also increased in proportion to the SGBD cation load. To reduce the waste volume, new cation resin exchange criteria is confirmed that demineralizer is almost saturated.

  • PDF

Dependence of Na+ leakage on intrinsic properties of cation exchange resin in simulated secondary environment for nuclear power plants

  • Hyun Kyoung Ahn;Chi Hyun An;Byung Gi Park;In Hyoung Rhee
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.640-647
    • /
    • 2023
  • Material corrosion in nuclear power plant (NPP) is not controlled only by amine injection but also by ion exchange (IX) which is the best option to remove trace Na+. This study was conducted to understand the Na+ leakage characteristics of IX beds packed with ethanolamine-form (ETAH-form) and hydrogen-form (H-form) resins in the simulated water-steam cycle in terms of intrinsic behaviors of four kinds of cation-exchange resins through ASTM test and Vanselow mass action modeling. Na+ was inappreciably escaped throughout the channel created in resin layer. Na+ leakage from IX bed was non-linearly raised because of its decreasing selectivity with increasing Na+ capture and with increasing the fraction of ETAH-form resin. Na+ did not reach the breakthrough earlier than ETAH+ and NH4+ due to the increased selectivity of Na+ to the cation-exchange resin (H+ < ETAH+ < NH4+ ≪ Na+) at the feed composition. Na+ leakage from the resin bed filled with small particles was decreased due to the enhanced dynamic IX processes, regardless of its low selectivity. Thus, the particle size is a predominant factor among intrinsic properties of IX resin to reduce Na+ leakage from the condensate polishing plant (CPP) in NPPs.

The Effects of Resin Ratio and Bed Depth on the Performance of Mixed-bed Ion Exchange at Ultralow Solution

  • Yoon, Tae-Kyung;Lee, Gang-Choon;Noh, Byeong-Il
    • 한국환경과학회지
    • /
    • 제18권6호
    • /
    • pp.595-601
    • /
    • 2009
  • The effects of the cation-to-anion resin ratio and bed depth on ion exchange performance of mixed-bed were studied at ultralow solution concentration. Breakthrough curves were experimentally obtained for NaCI solution as functions of resin ratio and bed depth. The bed depth affects the pattern of the sodium breakthrough curve but not the chloride breakthrough curve in beds because of the selectivity difference. Resin selectivity determines the shape of breakthrough curves, Some sodium and chloride breakthrough curves crossed at a point as a function of resin ratio. The lower cation-to-anion resin ratio showed the higher effluent concentration or treated volume of the crossover point regardless of the total resin weight.

Trimerization of Isobutene over Solid Acid Catalysts: Comparison between Cation-exchange Resin and Zeolite Catalysts

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.339-341
    • /
    • 2008
  • Catalytic trimerization of isobutene to produce triisobutenes has been performed over cation-exchange resin and zeolite catalysts. Resin catalysts have the advantage of long lifetime and high trimers selectivity even though the regeneration of an aged catalyst is not satisfactory. On the contrary, zeolite catalysts can be regenerated facilely by simple calcination in air even though the lifetime is short and trimers selectivity is low probably due to small pore size and strong acidity, respectively. It is, therefore highly desirable to develop an inorganic acid catalyst with macro- or meso-pores to show catalytic performances similar or superior to those of macroporous resin catalysts.

Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

  • Lee, Kwang-Pill;Choi, Seong-Ho;Park, Yu-Chul;Bae, Zun-Ung;Lee, Mu-Sang;Lee, Sang-Hak;Chang, Hye-Yong;Kwon, Se-Mok;Kazuhiko Tanaka
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권9호
    • /
    • pp.1324-1328
    • /
    • 2003
  • The simultaneous determination of anions ($SO_4 ^{2-},\;Cl^-,\;and\;NO_3^-$) and cations ($Na^+,\;NH^{4+},\;K^+,\;Mg^{2+},\;and\;Ca^{2+}$) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cationexchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the $H^+$-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters.

원자로 일차 냉각제 계통내 탈염공정의 양이온 교환수지상에서 니켈(Ni), 코발트(Co) 및 은(Ag) 이온의 흡착 특성 (Adsorption Characteristics of Ni, Co and Ag Ions on The Cation Exchange Resin of Demineralization Process in Primary Coolant System of PWR)

  • 양현수;김영호;강덕원;성기방
    • 공업화학
    • /
    • 제10권1호
    • /
    • pp.51-57
    • /
    • 1999
  • 원자로 정지시 냉각제 계통내 탈염 공정의 최적운전에 도움을 줄 목적으로 Amberite IRN 77 양이온 교환수지상에서 Ni(II), Co(II) 및 Ag(I) 이온의 흡착특성을 연구하였다. 양이온 교환수지상에서 Ni(II), Co(II) 및 Ag(I) 이온 각각의 흡착 메카니즘은 Langmuir isotherm에 잘 일치하였다. 양이온교환수지의 형태에 따른 영향으로서 $H^+$-형의 수지의 흡착 및 처리 용량은 $Li^+$-형의 수지보다 우수하였다. 다성분계의 용액을 위한 연속식 이온교환공정에서 양이온교환수지의 흡착선택성은 Ni(II)${\approx}$Co(II)>Ag(I)였으며, 유속의 증가는 수지의 처리용량 뿐만 아니라 파과곡선의 기울기를 감소시켰다.

  • PDF