• 제목/요약/키워드: Cathodic protection potential

검색결과 107건 처리시간 0.022초

희생양극방식을 응용한 콘크리트 중의 철근의 전기방식 효과 (Effect of the Chathodic Protection in Concrete by Applying Sacrificial Anode System)

  • 김성수;김홍삼;김진철;김종필;박광필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.87-92
    • /
    • 2001
  • Reinforced concrete have defect in durability due to carbonation, freezing and thawing, and penetration of chloride ions with time in spite of superb structure. Especially steel corrosion in concrete due to penetration of chloride ions have result in a marked decline in service life. The principal purpose in this study is to see effect of sacrificial anode cathodic system, one of the electrochemical methods in order to the control of steel corrosion in concrete. There are chloride content in concrete in cracked and no cracked specimen with cathodic protection. To recognize the effect of sacrificial anode cathodic protection, Instant-off potential are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

희생양극재의 매입에 의한 콘크리트 중의 전기방식 효과 (Effects of the Protection for Rebars by Embeded Sacrificial Anode in Concrete)

  • 김성수;김홍삼;김종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1207-1212
    • /
    • 2001
  • Reinforced concrete has defects in durability due to carbonation, freezing and thawing, and penetration of chloride ions with elapse of time in spite of super structure. Especially steel corrosion in concrete due to penetration of chloride ions has result in a severe decline in service life. The principal purpose of this study is to estimate effects of sacrificial anode cathodic system, one of the electrochemical methods in order to control of steel corrosion in concrete. There are chloride content in concrete in cracked and non cracked specimen with cathodic protection. To investigate the effect of sacrificial anode cathodic protection, potential-decay with current density, corrosion ratio, etc. are measured. We have the excellent effect for control steel corrosion adaption sacrificial anode cathodic system.

  • PDF

인공해수중에서 연강 용접부의 표면구열 성장거동 (Study on Surface Crack Propagation Behaviour of Mild Steel Weldment in Synthetic Sea Water)

  • 이종기;정세희
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.492-501
    • /
    • 1990
  • It was known that the fracture incidences of offshore structure were mostly originated from the surface defects. Especially, in the case of the welded structures, since the welded region has some defects and incomplete beads which are apt to behave like the surface cracks, it has been necessary to evaluate the environmental effects on crack growth at HAZ for the design crack growth behaviour at multi-pall HAZ for SWS41 steel under free corrosion and cathodic protection(-0.9V vs Ag/Agcl) conditions. The results are summarized as follows ; (1) Crack growth rate of the as weld in air was faster than that of the parent and PWHT specimens over all .DELTA.K rang. (2) In free corrosion test, surface crack growth rate of the as welded was decreased in comparison with that of the parents. (3) In fatigue test under cathodic protection, cathodic electric potential(-0.9V vs Ag/Agcl) for the SWS41 steel parent was effective, while for the as welded ineffective. (4) There was a tendency that the exponent(m) of the Paris' equation was decreased in order of microhardness magnititude in air and under cathodic protection conditions and vise versa in free corrosion. (5) Fracture surface has dimples and ductile striations in air test, but transgranular cracks and brittle striations under cathodic protection test.

강 용접부의 응력부식크랙 감수성 평가에 관한 연구 II -음극방식에서의 파괴거동- (Evaluation of Scc Susceptibility of Welded HAZ in Structual Steel(II) -Frcature Behavior in Cathodic Protection-)

  • 임재규;조정운;나의균
    • Journal of Welding and Joining
    • /
    • 제11권3호
    • /
    • pp.61-74
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environment has been attributed to stress corrosion cracking(SCC) which is resulting from the combined effects of corrosive environments and static tensile stress. Cathodic protection is an electrochemical method of corrosion control that is widely used in marine environment and primarily on carbon steel. A number of criteria are used to determine whether or not a structure is cathodically protected. In practice, -0.8V versus Ag/AgCl is the most commonly used for marine structures. This paper showed the combined effects of cathodic potential and slow, monotonic straining on the tensile ductility and fracture morphology of parents and friction welded joints for SM45C, SCM440 and SM20C steels in syntheic sea water(S.S.W.,pH:8.2). For the parent materials in cathodic potentials, the higher tensile strength is, the more susceptible SCC is. And the welded HAZ is more susceptible than the parent materials.

  • PDF

3% NaCl용액중에 있어서 4340강의 부식거동과 과방식에 의한 수소포화거동에 미치는 인히비타의 영향 (The effect of inhibitors affecting to corrosion behaviors and hydrogen embrittlement behaviors due to over-propection of a 4340 steel in 3% NaCl solution)

  • 문경만;백태실;이상태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.54-62
    • /
    • 1989
  • When some kinds of inhibitors, i.e. $1{\times}10{-3}mol/l$ arsenic trioxide, 0.2 mol/l 2-mercaptoethanol, 0.2mol/l thiourea were added to 3% NaCl solution, there were some considererable effects to decrease corrosion current density in natural potential condition and the effect fo solution temperature increasing corrosion rate was smaller than that of no addition to 3% NaCl solution. However the susceptibility of hydrogen embrittlement due to over-protection in case of cathodic protection was much greater than that of no addition, especially was the greatest in case of addition of 2-mercaptoethanol. Therefore adding inhibitors for anti-corrosion effect, it is suggested that selection of the optimum protection potential is important from the view point of prevention against hydrogen embrittlement due to over-protection in case of cathodic protection.

  • PDF

Electrochemical Characteristics of Zn-mesh Cathodic Protection Systems in Concrete in Natural Seawater at Elevated Temperature

  • Kim, Ki-Joon;Jung, Jin-A;Lee, Woo-Cheol;Jang, Tae-Seub
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.269-274
    • /
    • 2007
  • The corrosion of steel in concrete is significant in marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood so far. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100 cm column specimens with eight of 10 cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both $10^{\circ}C$ and $40^{\circ}C$ in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode.

BEM을 이용한 Cathode 방식 시스템에서 전극 위치 최적화 (Optimum Location of Electrode of Cathodic Protection System by using Boundary Element Method)

  • 이광호;정군석;백동철;조윤현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.772-774
    • /
    • 2000
  • The objective of a cathodic protection system (CP) is to protect the buried metallic structure against the corrosion caused by chemical reaction between the buried structure and the surrounding medium, such as soil. This paper presents a boundary element application to determine the optimal impressed current densities in a cathodic protection system. The potential within the electrolyte is described by the Laplace's equation with nonlinear boundary conditions which are enforced based on experimentally determined electrochemical polarization curves. The optimal impressed current densities are determined in order to minimize the power supply for protection. The solution is obtained by using the conjugate gradient method in which the governing equations and the protecting conditions are taken into account by the penalty function method. Numerical example are presented to demonstrate the practical applicability of the proposed method.

  • PDF

장기간 자연 부식된 항만부두 강구조물의 방식특성 연구 (On the Corrosion Protection Characteristics of Port Steel Structures Corroded Naturally for a Long Period of Time)

  • 김기준;최영선
    • 한국항만학회지
    • /
    • 제12권1호
    • /
    • pp.145-154
    • /
    • 1998
  • Protection characteristics of the corroded steel pile which was served as a pier structure over 8 years in seawater have been examined in terms of corrosion potential, electrochemical impedance spectroscopy(EIS) and anodic/cathodic polarization curves. The steel structure was sectioned into two parts, waterline(splash zone, just above the seawater surface) and in-water(underwater), and protection characteristics for the two parts were investigated with the application of cathodic protection(CP) by sacrificial anodes using Zn and Al alloys. The main results obtained were as follows; (1) The corrosion potential of waterline zone was higher than that of in-water, which implied that the corrosion of waterline was more severe than that of in-water, (2) As a result of EIS examination, the transition period from the apparent CP to the substantial CP took about twenty to thirty days according to the corrosion condition.

  • PDF

해상 교량에 설치된 희생양극식 전기방식의 8년 이후의 성능에 관한 연구 (A study on the performance of the sacrificial anode used for cathodic protection of a marine bridge after 8 years)

  • 정진아;하지명;이두형;이상득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.510-515
    • /
    • 2016
  • 최근 우리나라의 남해고속도로 상에 있는 해상 교량의 교각에서 부식이 발생하였다. 이 해상 교량의 부식 손상부위를 보수하기 위하여 희생양극식 전기방식을 설치하였다. 본 연구에서 소개한 해상교량의 경우, 구조물의 상부에서는 부식이 발생되지 않았기 때문에 해수에 의한 조수간만의 영향을 받는 간만대와 비말대 부분에만 희생양극식 전기방식을 설치하였다. 해상교량에 희생양극식 전기방식을 설치한 후 약 8년이 경과된 시점에서 희생양극식 전기방식의 성능을 검증하기 위하여 방식전류, 방식전위 및 복극량을 측정하였다. 전체 60개의 교각에 설치된 희생양극식 음극방식의 성능에 관한 실험 결과는 방식 양호(13개 교각), 부분 방식(27개 교각), 일시적 오류(7개 교각), 피복 들뜸(13개 교각)과 같이 4부분으로 분류하였다. 방식성능이 불량한 교각에 대해서는 양극의 추가 설치 및 Jacket 시공 등과 같은 추가적인 조치가 필요하다고 판단된다.

콘크리트 중의 철근 부식 억제를 위한 외부전원법의 효과 (Effect of Impressed Current System for Corrosion Protection of Rebars in Concrete)

  • 문한영;김성수;김홍삼
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.221-230
    • /
    • 1999
  • 콘크리트 구조물에 균열이 생겨 물과 산소의 침투확산이 용이해 지거나 또는 외부로부터 염소이온과 같은 염화물이 침투확산되어 콘크리트 중의 철근까지 도달할 경우 및 콘크리트의 중성화가 철근위치까지 진행될 경우 철근의 부동태 피막은 파괴되어 부식이 급진전 되며 콘크리트의 박리 및 탈락현상이 수반될 뿐만 아니라 구조물의 내구성이 크게 저하된다. 본 연구에서는 콘크리트 중의 철근부식을 억제하기 위한 한 방안으로 적용되는 전기방식의 이론적인 고찰과 콘크리트 내부에 다량의 염화물을 함유시키거나 또는 균열을 발생시킨 시험체에 대하여 외부전원법을 활용한 실내실험을 실시하여 철근의 방식효과에 대해 고찰하였다. 외부전원법에 의한 전기방식을 실시하여 복극량을 측정한 결과 대상 시험체 모두 NACE의 방식기준을 만족하였으며, 부식면적율의 측정결과 34 ~84%, 단면감소의 경우 84 ~ 86%의 방식효과를 확인하였다.