• Title/Summary/Keyword: Cathodic Protection System

Search Result 101, Processing Time 0.023 seconds

The effect of temperature and relative humidity on concrete slab specimens with impressed current cathodic protection system

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.260-265
    • /
    • 2013
  • Impressed current cathodic protection (ICCP) system is one of the most promising corrosion protection methods. The Effect of ICCP system can be changed at diverse conditions. Particularly, temperature and relative humidity plays a crucial role in CP (Cathodic Protection) effect. Thus, in this study, the influence of temperature and relative humidity on concrete specimens was investigated. Specimens were concrete slab type with a base of $400mm{\times}400mm$ and height of 70mm. To enhance the effect of CP system, seawater was used as an electrolyte. Used anode for ICCP system was mixed metal oxide (MMO) titanium. Test factors were natural potential, CP potential, CP current, and 4-hour depolarization potential. From this study, it could be confirm that CP potential and current were highly influenced by temperature and relative humidity.

Apparatus on Corrosion Protection and Marine Corrosion of Ship (선박의 해양 부식과 부식방지 장치)

  • Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.105-116
    • /
    • 2011
  • Ships and offshore structures are exposed to harsh marine environments, and maintenance and repair are becoming increasingly important to the industry and the economy. The major corrosion phenomenons of metals and alloys in marine environment are pitting corrosion, stress corrosion cracking, crevice corrosion, fatigue corrosion, cavitation-erosion and etc. due to the effect of chloride ions and is quite serious. Methods of protection against corrosion can generally be divided into two groups: anodic protection and cathodic protection. Anodic protection is limited to the passivity characteristics of a material in its environment, while cathodic protection can apply methods such as sacrificial anode cathodic protection and impressed current cathodic protection. Sacrificial anode methods using Al and Zn alloys are widely used for marine structures and vessels intended for use in seawater. Impressed current cathodic protection methods are also widely used in marine environments, but tend to generate problems related to hydrogen embrittlement caused by hydrogen gas generation. Therefore, it is important to the proper maintenance and operation of the various corrosion protection systems for ship in the harsh marine environment.

Cathodic Protection Behavior of Coastal Bridge Structure with Sacrificial Anode Cathodic Protection System (희생양극식 음극방식이 적용된 해안 교량 구조물의 방식거동)

  • Ha, Ji-Myung;Jin, Chung-Kuk;Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.242-246
    • /
    • 2012
  • This measurement represents the effectiveness of sacrificial anode cathodic protection (SACP) system in a coastal bridge structure. To verify the cathodic protection (CP) effect, the monitoring sensor (DMS-100) that could measure potential, corrosion rate, current, concrete resistivity, and temperature was embedded. The measurement conducted for three years after CP system was installed. Specifically, due to the fact that fresh water and sea water was repeated in the bridge structure, this bridge structure presented special CP behavior. Measurement factors were CP potential, CP current, concrete resistivity, and depolarization potential. In addition, visual inspection was also carried out. As a result of current and depolarization measurement, CP system was well activated in most piers.

Determination of Low-temperature Electrochemical Properties of Selected Cation-exchange Membranes for Cathodic Protection Analysis

  • Ko, Moon-Young;Kwon, Byeong-Min;Hong, Byung-Pyo;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.8-12
    • /
    • 2008
  • The electrochemical properties of Nafion type membranes as a function of temperature to examine the key factors affecting the cathodic protection process at low temperatures was investigated in this study. Variable temperature experiments for AC impedance, DC resistance were conducted. The resistances of 3 Nafion membranes (N 324, N 450, N MAC) were measured in 30% KOH (aq) for a range of temperatures between $-30^{\circ}C$ and room temperature. Membrane resistance increases exponentially with decreasing temperature. This behaviour is most significant at operational temperatures below $0^{\circ}C$. These membranes are stable under the low temperature and caustic conditions of the heat exchange system, but they place a much higher restriction on the cathodic protection of the stainless heat exchange stack. N 450 has the lowest AC impedence and DC resistance at temperatures below $0^{\circ}C$ and consequently is most suitable membrane of the three, for low temperature applications.

Study on the Corrosionproofing in Concrete by Cathodic Protection (전위변화에 의한 콘크리트내의 철근방식에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.213-220
    • /
    • 1999
  • The purpose of this study is to apply cathodic protection to reinforced concrete structure and provide fundamental data to prevent the corrosion. The theory of cathodic protection of steel in concrete is to apply sufficient direct current so that corroding anodes on the steel are prevented from discharging ions. Two methods are used to supply the external current. In one, the protected metal is the cathode by connecting it to a more active metal. In the second, an external direct current power source supplies the current. The first is the sacrificial-anode system and the second the impressed-current system. The study results showed that the corrosion of the reinforcing steel in concrete could be enormously decreased by using protective current. The sacrificial anode and concrete nave to be adhered closely each in order to prevent the corrosion of reinforcing steel.

  • PDF

Characteristics of Cathodic Protection with ICCP Anode in Reinforced Concrete (철근콘크리트용 ICCP 양극의 종류별 음극방식 특성)

  • Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.112-119
    • /
    • 2012
  • This paper presents the results of a study of the effectiveness of cathodic protection with insoluble ICCP anode in reinforced concrete structures. Experimental tests were carried out on reinforced concrete specimens with 3 different commercial anodes for ICCP system in order to compare the effectiveness of cathodic protection. Results have shown that the kinds of anode for ICCP is irrelevant to the effectiveness of cathodic protection, In case of ICCP, the performance of cathodic protection has no relationship to the kinds of anode especially in concrete specimens with sea water condition. It has been found slightly more effective at Ti-Rod anode in fresh water condition and Ti-Mesh anode in atmospheric condition.

A New Protection Strategy of Impressed Current Cathodic Protection for Ship

  • Oh, Jin-Seok;Kim, Jong-Do
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.592-596
    • /
    • 2004
  • Corrosion is never avoided in the use of materials with various environments. The underwater hull is normally protected against rusting by several coatings of anti-corrosive paint. The purpose of ICCP(Impressed Current Cathodic protection) system is to eliminate the rusting or corrosion, which occurs on metal immersed in seawater. The anode of ICCP system is controlled by an external DC source with converter. The function of anode is to conduct the protective current into seawater. The proposed algorithm includes the harmonic suppression control strategy and the optimum protection strategy and has tried to test the requirement current density for protection, the influence of voltage, the protection potential. This paper was studied the variation of potential and current density with environment factors, time and velocity, and the experimental results will be explained.

Study of Practical Cathodic Protection of 2nd Class Stainless Steel Shaft by means of Al Sacrificial Anode (AL계 희생양극에 의한 2종스테인리스 강축의 음극방식 실용화 연구)

  • Son, Yeong-Tae;Lee, Myeong-Hun;Lee, Hui-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.22
    • /
    • pp.34-53
    • /
    • 2007
  • In the case of hull material. large sized merchant ships are made of steel, on the other hand FRP or wood are used for small sized fishing boats. At present in Korea approximately 88,500 fishing boats are in operation of which 70% are made of FRP In the meantime, stainless steel is frequently used as shaft materials of the small-size FRP fishing boat. Namely, the kinds of shaft materials are STS 304(18Cr-8Ni), STS 316(18Cr-12Ni-2.5Mo steel) and STS 630(17Cr-Ni-Nb steel)etc. Among these things, STS 304 which is the cheapest and having ordinary corrosion resistance is most widely used as 2nd class shaft material. But, using STS 304 for shaft system material of the small-size FRP fishing boat on seawater environments entails a severe corrosion which causes shaft system troubles. Particularly, the corrosions tend to be concentrated of the stern and bow side, propeller shaft surface of inside of stern tube and the boat having no stern cooling pipe line system. As a solution for those problems, research on the ways to mitigate corrosion on the part of 2nd class stainless steel shaft have been undertaken. In the result, not only clarification for the reason of corrosion of the part of stainless steel shaft used mainly for the small-size FRP fishing boat was done, but also most optimal corrosion protection system was developed by experimenting shaft's protection simulation based of the electrochemical cathodic protection principle. In addition, verification through the field test on the optimal cathodic corrosion protection method by means of aluminum sacrificial anode was carried out. In this study, effective and economical shaft's protection system is suggested to the small-size FRP fishing boat operator by substantiating the results obtained from the research on the optimal cathodic protection.

  • PDF

A Study on the Development of a Control and Monitoring System for Impressed Current Corrosion Protection (선박용 차세대 외부전원방식 제어 및 감시 시스템 UNIT 개발)

  • Kim, Y.B.;Kim, B.Y.;Suh, J.H.;Kim, J.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.104-110
    • /
    • 2006
  • Corrosion has been around for all of recorded history. Cathodic protection is the electrical solution to the corrosion problem. Corrosion is not exactly a new topic. It has been around since the beginning of time. Corrosion is simply the loss of material resulting from current leaving a metal, following through a medium, and returning to the metal at a different point. Corrosion takes many forms and has various names, such as oxidation, rust, chemical, and bacteria action. Regardless of the agent, all corrosion is the result of electrical current flow. Various methods are used to treat corrosion or to try to prevent ti. Some of these include chemical treatment. coatings, and electrical current. Especially, proper impressed current can stop corrosive action on the protected surface. In this article, we introduce the Impressed Current Cathodic Protection (ICCP) Control and monitoring system developed by ourselves. The ICCP system is composed of a power supply, anode, reference electrode and controller. The main issue is to control the current flow on the desired value such that it is possible to force a metal to be more negative(cathodic) than the natural state. From the this process, we can achieve the cathodic protection. Of course, in the developed system, the necessary functions are possessed, such as remote control, monitoring of system fault detection etc. Some experimental results show the system performance and usefulness.

  • PDF

The Field Test of a Mitigation Method from DC Subwaysystem for Underground Pipeline

  • Bae, Jeong-Hyo;Ha, Tae-Hyun;Ha, Yoon-Cheol;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.308-310
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system, Boding ICCP system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP are described.