• Title/Summary/Keyword: Cathodic Protection 음극방식

Search Result 55, Processing Time 0.026 seconds

A study on the technology and application of cathodic protection to reinforced concrete (철근콘크리트의 방식기술 및 음극방식의 적용에 관한 고찰)

  • Jeong, Jin-A;Ha, Ji-Myung;Oh, Se-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.599-604
    • /
    • 2016
  • Cathodic protection was first introduced as a technology for preventing the corrosion of metals in seawater and underground environments in the early 19th century, eventually leading to the introduction of cathodic protection to the reinforced concrete technology sector in the 1970s. In the 1990s, it was demonstrated that the effectiveness of corrosion protection had increased through a number of developments and studies. Recently, cathodic protection was applied to some reinforced concrete structures and has gradually expanded in scope in South Korea. Technical expertise is necessary to understand the underlying electrochemical principles and also because cathodic protection is important for normal physical maintenance. Therefore, in this study, we introduce the technical details and examples of applications of the cathodic protection of reinforced concrete, including the basic theory, principles, and other criteria.

Study on the Control of Erosion-Corrosion in Bearing Alloy Meals by Cathodic Protection (음극방식에 의한 선박용 베어링 합금재의 침식-부식억제에 관한 연구)

  • 서현수;임우조;이진열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1994.06a
    • /
    • pp.40-41
    • /
    • 1994
  • 본 연구에서는 윤활유에 해수가 혼입된 유화유중에서 음극방식에 의한 선박용 베어링 합금재의 침식-부식억제에 관한 연구를 위하여, 초음파 진동장치의 캐비네이션 발생장치에 의해 선박용 베어링 합금재의 캐비네이션 침식-부식방지를 위해 음극방식(Cathodic protection)실험을 실시하였다. 이실험을 토대로 하여 해수의 혼입에 따른 유화유중에서 음극방식에 의한 베어링 합금재의 침식-부식억제효과를 구명하고자 한다.

  • PDF

The Effects of cathodic protection on fracture toughness of buried gas pipeline (매설가스배관의 음극방식이 배관의 파괴인성에 미치는 영향)

  • Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.573-578
    • /
    • 2001
  • For the corrosion protect ion of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD test ing with varying test conditions, such as the potential and current density. The CTOD of the base steel and weld metal showed a strong dependence of the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Hydrogen introduced fractures, caused by cathodic overprotection.

  • PDF

Determination of optimum protection potential for cathodic protection of offshore wind-turbine-tower steel substructure by using potentiostatic method (정전위법에 의한 해상풍력 타워 구조물용 강재의 음극방식을 위한 최적방식전위 결정)

  • Lee, Jung-Hyung;Jung, Kwang-hu;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • In this study, electrochemical methods were used to determine the optimum protection potential of S355ML steel for the cathodic protection of offshore wind-turbine-tower substructures. The results of potentiodynamic polarization experiments indicated that the anodic polarization curve did not represent a passivation behavior, while under the cathodic polarization concentration, polarization was observed due to the reduction of dissolved oxygen, followed by activation polarization by hydrogen evolution as the potential shifted towards the active direction. The concentration polarization region was found to be located between approximately -0.72 V and -1.0 V, and this potential range is considered to be the potential range for cathodic protection using the impressed current cathodic protection method. The results of the potentiostatic experiments at various potentials revealed that varying current density tended to become stable with time. Surface characterization after the potentiostatic experiment for 1200 s, by using a scanning electron microscope and a 3D analysis microscope confirmed that corrosion damage occurred as a result of anodic dissolution under an anodic polarization potential range of 0 to -0.50 V, which corresponds to anodic polarization. Under potentials corresponding to cathodic polarization, however, a relatively intact surface was observed with the formation of calcareous deposits. As a result, the potential range between -0.8 V and -1.0 V, which corresponds to the concentration polarization region, was determined to be the optimum potential region for impressed current cathodic protection of S355ML steel.

Effect of Moisture on the Current Density for Optimized Cathodic Protection Condition in RC Structures (RC조 구조물의 최적 음극방식 조건 설정을 위한 함수율의 영향에 대한 평가)

  • Park, Dong-Cheon;Cho, Gyu-hwan;Ahn, Jae-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.29-30
    • /
    • 2013
  • Steel corrosion is the most serious problem in RC structures. Even though patch repair method is normally applied in repair system, the effectiveness is not enough. Cathodic protection in active repair method to deteriorated RC structures. FEM model was developed to simulate the optimized cathodic protection condition. Iro oxidation, hydrogen evolution and oxygen reduction were considered to expect current distribution. Moisture content in concrete which can affect the electrolyte conductivity was used as initial condition.

  • PDF

Study on the Cathodic Protection Characteristics of Hot Water Boiler by Mg-Alloy Galvanic Anode(1) (Mg 합금 유전양극에 의한 온수Boiler의 음극방식특성에 관한 연구(1))

  • 임우조;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.147-152
    • /
    • 2001
  • Corrosion damage of boiler, factory equipment and so forth occur quickly due to using of the polluted water, resulting in increasing leak accident. Especially, working life of hot water boiler using the polluted water becomes more short, and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection methode is suitable for the application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of hot water boiler. In tap water solution, the measurement of cathodic protection potential according to the time elapsed is carried out, and behavior of cathodic polarization with current change is investigated. The main results obtained are as follows. In hot water boiler shell, the open circuit potential of base metal become less noble than that of weld Bone, and the current density of base metal becomes low than that of weld zone. The further distance from Mg-alloy galvanic anode, the higher cathodic protection potential of hot water boiler appears. And protective potential becomes high according to pass cathodic protection time and after 6∼10 days become stable.

  • PDF

Cathodic Protection Characteristics and Effective Length of Protection Current of Concrete Pile using Zn-mesh Sacrificial Anode (아연 메쉬 희생양극을 이용한 콘크리트 파일의 음극방식 특성 및 방식전류 유효거리)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.773-776
    • /
    • 2008
  • The corrosion of steel in concrete is significant in marine environment. Marine bridges are readily deteriorated due to the exposure to marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100cm column specimens with eight of 10cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both 10$^{\circ}$C and 40$^{\circ}$C in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode

  • PDF

A Study on Improvement of Cathodic Protection Design of Harbour Marine Steel Structure (항만 강관 구조물의 음극방식설계 개선방안에 관한 연구)

  • 김성종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.584-590
    • /
    • 1997
  • Harbour marine steel structures, which are served in severe marine environment, should be protected in appropriate method to reduce corrosion problems. Cathodic protection, one of the protection methods in terms of practical and economical point of view is being widely used to marine steel structures mentioned above. Recently it has been reported that the life of Al alloy anode with sacrificial anode for protection of harbour marine steel structures was shortened significantly than the original design life. In this study, the optimum cathodic protection design of harbour marine steel structures was investigated with parameter of sea water pollution degree.

  • PDF

A Study on the Protection of the Bare and Painted Steel Plates (아연 양극에 의한 도장강판과 나강판의 방식 연구)

  • 문경만;김종신;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-65
    • /
    • 1993
  • Galvanic protection method is one the cathodic protection methods and is mostly used for corrosion prevention of heat exchangers and ship's hull. In this paper, it was investigated that how cathodic potential distribution was varied with according to the bare and painted steel plates in case of galvanic anode protection. The results obtained above were as follows. 1. Cathodic potential distribution of a painted steel plate was smoothed than that of the bare steel plate all over the cathodic surface area. 2. It was shown that polarization potential of the bare steel plate was somewhat shifted to negative potential, on the contrary that of the painted steel plate was somewhat shifted from negative potential to positive potential as time gone by beginning of galvanic anode method. 3. The applied current density in order to maintain constant protection potential(-770mv SCE) in the painted steel plate was less than that of the bare steel plate because of the high resistance polarization of the painted steel plate. 4. It was suggested that required number and life-time of anode for galvanic anode protection could be decided easily with corrosion prevention coefficient obtained by experimental data.

  • PDF

Module-Type Switching Rectifier for Cathodic Protection of Underground and Maritime Metallic Constructions (지하매설 및 해양 금속구조물 음극방식용 모듈 타입 스위칭 정류기)

  • 문상호;김보경;김인동;노의철;권영원;정성우;임헌호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.570-578
    • /
    • 2002
  • Cathodic protection is widely used to prevent corrosion of steel materials buried in the underground and sea. As a rectifier for cathodic protection, the conventional phase-controlled rectifiers have been used so far in spite of such shortcomings as large volume, heavy weight and floor power factor. In order to overcome such disadvantages, this paper proposes a new module-type switching rectifier for cathodic protection, which is composed of two parts, namely, AC/DC converter and module- type DC/DC converter. The AC/DC converter is a single-phase IGBT PWM rectifier, thus resulting in almost unity power factor and controlled DC output voltage. The module-type DC/DC converter operates under ZVS/ZCS switching condition to permit high frequency switching operation. It enables to use high-frequency transformer for electrical isolation, thus reducing volume and weight of overall system and improving system efficiency. It should be anticipated that the proposed rectifier techniques apply to the similar technical areas.