• Title/Summary/Keyword: CathodeThermal

Search Result 210, Processing Time 0.025 seconds

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability

  • Shin, Ji-Woong;Lee, Seon-Jin;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.272-278
    • /
    • 2021
  • In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.

One-Step β-Li2SnO3 Coating on High-nickel Layered Oxides via Thermal Phase Segregation for Li-ion Batteries

  • Seongmin Kim;Hanseul Kim;Sung Wook Doo;Hee-Jae Jeon;In Hye Kim;Hyun-seung Kim;Youngjin Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The global energy storage markets have gravitated to high-energy-density and low cost of lithium-ion batteries (LIBs) as the predominant system for energy storage such as electric vehicles (EVs). High-Ni layered oxides are considered promising next-generation cathode materials for LIBs owing to their significant advantages in terms of high energy density. However, the practical application of high-Ni cathodes remains challenging, because of their structural and surface instability. Although extensive studies have been conducted to mitigate these inherent instabilities, a two-step process involving the synthesis of the cathode and a dry/wet coating is essential. This study evaluates a one-step β-Li2SnO3 layer coating on the surface of LiNi0.8Co0.2O2 (NC82) via the thermal segregation of Sn owing to the solubility limit with respect to the synthesis temperature. The doping, segregation, and phase transition of Sn were systematically revealed by structural analyses. Moreover, surface-engineered 5 mol% Sn-coated LiNi0.8Co0.2O2 (NC82_Sn5%) exhibited superior capacity retention compared to bare NC82 owing to the stable surface coating layer. Thus, the developed one-step coating method is suitable for improving the properties of high-Ni layered oxide cathode materials for application in LIBs.

The Effects of Li-La-Ti-O Coating on the Properties of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material (Li[Ni0.3Co0.4Mn0.3]O2 양극물질의 Li-La-Ti-O코팅 효과)

  • Lee, Hye-Jin;Yun, Su-Hyun;Park, Bo-Gun;Ryu, Jea-Hyeok;Kim, Kwan-Su;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.890-896
    • /
    • 2009
  • Li(Ni, Co, Mn)$O_2$ has been known as one of the most promising cathode materials for lithium secondary batteries. However, it has some problems to overcome for commercialization such as inferior rate capability and unstable thermal stability. In order to address these problems, surface modification of cathode materials by coating has been investigated. In the coating techniques, selection of coating material is a key factor of obtaining enhanced properties of cathode materials. In this work, we introduced solid electrolyte (Li-La-Ti-O) as a coating material on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Specially, we focused on a rate performance of Li-La-Ti-O coated $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Both bare and Li-La-Ti-O 2 wt.% coated sample showed similar discharge capacity at 0.5C rate. However, as the increase of charge-discharge rate to 3C, the coated samples displayed better discharge capacity and cyclic performance than those of bare sample.

Electrochemical Properties and Thermal Stability of LiNi0.8Co0.15 Al0.05O2-LiFePO4 Mixed Cathode Materials for Lithium Secondary Batteries

  • Kim, Hyun-Ju;Jin, Bong-Soo;Doh, Chil-Hoon;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • We prepared various $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-cathode electrodes by changing the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ and $LiFePO_4$ used, and we analyzed the electrochemical characteristics of the cathodes. We found that the reversible specific capacity of the cathodes increased and that the capacity retention ratios of the cathodes decreased during cycling as the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ increased. Conversely, we found that although the reversible specific capacity of the cathodes decreased because of the material composition, the cycle property of the cathodes increased when the $LiFePO_4$ content increased. We analyzed the thermal stability of the $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-material cathodes by differential scanning calorimetry and found that it increased as the $LiFePO_4$ content increased.

Development of Cobalt-free $La_xSr_{4-x}Fe_6O_{13}$ ($0{\leq}x{\leq}2$) Intergrowth Cathode Material for Solid Oxide Fuel Cells

  • Lee, Seung-Jun;Yong, Seok-Min;Kim, Dong-Seok;Kim, Do-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.45.1-45.1
    • /
    • 2011
  • Cobalt-free $La_xSr_{4-x}Fe_6O_{13}$ ($0{\leq}x{\leq}2$) oxide have been synthesized and investigated as a potential cathode material for solid oxide fuel cells (SOFCs). $Sr_4Fe_6O_{13}$ consists of alternating perovskite layers ($Sr_4Fe_2O_8$) containing iron cations in octahedral oxygen coordination and $Fe_4O_5$ layers where iron cations have 5-fold coordination of two types-square pyramids and trigonal bipyramids. Our preliminary electrochemical testes of pristine $Sr_4Fe_6O_{13}$ show a rather high area specific resistance ($0.47{\Omega}cm^2$ at $700^{\circ}C$) for ~20 ${\mu}m$ thick layers with CGO electrolyte. The electrochemical performances are improved by La addition up to x=1 ($La_1Sr_3Fe_6O_{13}$, $0.06{\Omega}cm^2$ at $700^{\circ}C$). In addition, thermal expansion coefficient (TEC) values of $La_1Sr_3Fe_6O_{13}$ specimen demonstrated $15.1{\times}10^{-6}\;^{\circ}C^{-1}$ in the range of 25-900$^{\circ}C$, which provides good thermal expansion compatibility with the CGO electrolyte. An electrolyte supported (300-${\mu}m$-thick) single-cell configuration of $La_1Sr_3Fe_6O_{13}$/CGO/Ni-CGO delivered a maximum power density of 584 $mWcm^{-2}$ at $700^{\circ}C$. In addition, an anode supported single cell by YSZ electrolyte (10-${\mu}m$-thick) with a porous CGO interlayer between the cathode and the electrolyte to avoid undesired interfacial reactions exhibited 1,517 $mWcm^{-2}$ at $800^{\circ}C$. The unique composition of $La_1Sr_3Fe_6O_{13}$ with low thermal expansion coefficient and higher electrochemical properties could be a good cathode candidate for intermediate temperature SOFCs with CGO and YSZ electrolyte.

  • PDF

Studies of Co-Fe based perovskite cathodes with fixed A-site cations (중 저온형 고체 산화물 연료전지를 Co-Mn 계열의 페로브스카이트 구조의 공기극에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.364-367
    • /
    • 2006
  • The decrease of polarization resistance in cathode is the key point for intermediate temperature SOFC(Solid Oxide Fuel Cell). In this study, the Influence of Co substitution in B-site at perovskite PSCM (Pr0.3Sr0.7CoxMn(1-x)) was investigated. The PSCM series exhibits excellent MIEC(Mixed ionic Electronic Conductor) properties. The ASR(Area Specific Resistance) of PSCM3773 was $0.174{\Omega}cm^2\;at\;700^{\circ}C$. The activation energy of PSCM3773 was also lower than other compositions of PSCM. The ASR values were increased gradually during the thermal cycling test of PSCM37773 due to the delamination between electrolyte and cathode materials.

  • PDF

Characteristic of transparent OLED using transparent metal cathode with green phosphorescent dopant (투명 금속 음극을 이용한 녹색 인광 OLED의 특성)

  • Yoon, Do-Yeol;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.154-154
    • /
    • 2010
  • We have developed transparent OLED with green phosphorescent doped layer using transparent metal cathode deposited by thermal evaporation technique. Phosphorescent guest molecule, $Ir(ppy)_3$, was doped in host mCP for the green phosphorescent emission. Ca/Ag double layers were used as a cathode material of transparent OLED. The turn-on voltage of OLED was 5.2 V. The highest efficiency of the device reachs to 31 cd/A at 2 mA/$cm^2$.

  • PDF

Development of Thermal Management System Heater for Fuel Cell Vehicles (연료전지 자동차용 TMS 히터 개발)

  • Han, Sudong;Kim, Sungkyun;Kim, Chimyung;Park, Yongsun;Ahn, Byungki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

Characteristics of Electron Beam Extraction in Cold Cathode Type Large Cross-Sectional Pulsed Electron Beam Generator (냉음극형 대면적 펄스 전자빔 가속기의 빔인출 특성)

  • Woo, S.H.;Lee, K.S.;Lee, D.I.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1609-1611
    • /
    • 2001
  • A large cross-section pulsed electron beam generator of cold cathode type has been developed for industrial applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. The conventional electron beam generators need an electron scanning beam because the small cross section thermal electron emitter is used. The electron beam of large cross-section pulsed electron beam generator do not need to be scanned over target material because the beam cross section is large by 300$cm^2$. We have fabricated the large cross-sectional pulsed electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large area electron beam in the air. The electron beam current has been investigated as a function of accelerating voltage, glow discharge current, helium pressure, distance from the exit window and radial distribution in front of the exit window.

  • PDF