• Title/Summary/Keyword: Cathode water

Search Result 284, Processing Time 0.025 seconds

An Experimental Study of Verification for PEMFC's 1-Dimensional Simulation (PEMFC 1차원 시뮬레이션 검증을 위한 실험적 연구)

  • Moon, Cheor-Eon;Ahn, Seong-Yool;Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.191-195
    • /
    • 2007
  • In this study, we estimated the performance of PEMFC's unit cell as changing operating temperature in different inlet humidity condition at cathode side but anode dry, and tried to match experimental results with 1-dimensional simulation. We used $Nafion^{\circledR}112$ membrane and a self-manufactured PEMFC with active area of $25cm^{2}$ was used in this study. The range of operating temperature was $40{\sim}70^{\circ}C$ and oxygen through bubbled humidity chamber was supplied $0{\sim}80$% humidity condition as changing water temperature in humidity chamber. For figuring out governing equations, represent water contents in electrolyte membrane, the linear forward difference method was applied about time progress and quadratic central difference method was used about space progress. It was assumed that pressure terms were linearly changed due to thin electrolyte membrane. In low operating temperature condition, $40{\sim}60^{\circ}C$, increasing temperature rarely effected cell performance but we can see performance drop at $70^{\circ}C$. By modifying Henrry's constant and/or diffusion coefficient, the modified one-dimensional model was accomplished for calculation.

  • PDF

Modeling of Water Transportation in Dynamic Load Proton Exchange Membrane (PEM) Fuel Cell Power Generator (동적부하 PEM 연료전지 발전기에 있어서의 수분전달 모델링)

  • Agung, Bakhtiar;Choi, Kwang-Hwan;Kim, Young-Bok
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.1-7
    • /
    • 2011
  • PEM 연료전지에 있어서 수분의 균형이 연료전지의 시스템 성능에 현저한 영향을 미친다. 그래서 수분 균형은 가장 중요한 요소 중의 일부가 되었으며, 이에 관한 연구가 광범위하게 이루어지고 있다. 적절한 수분 균형을 유지하기 위해서는 적당한 멤브레인 수화작용(membrane hydration)이 필요하며, 반대로 촉매층(catalyst layer)에서의 익수(water flooding)현상이 없어져야 한다. 따라서 이와 같은 동적 상태에서 PEM 연료전지 내의 수분 균형을 유지하기 위해서는, 고도의 동적 수분 조정 기술이 확보되어야 한다. 현재의 연구는 이러한 특성을 고려하여 PEM 연료전지에서 동적부하 상태에서의 수분 이동에 관한 일차원 해석 모델에 관한 것이다. 금번 모델링의 결과, 양극촉매층(CCL, cathode catalystlayer)에서의 수분 상태는 거의 포화 단계에 이르고 있음을 보여주고 있으며, 이 모델링은 연료전지가 작동되는 동안의 CCL에 나타나는 수분의 양상을 예측하는데 활용될 수 있다. 본 논문에서는 수분 이동 모델이 국제규격에 따라 다양한 수송기관이 가동될 때, 동적부하 상태에서 서로 다른 차이점을 발견하기 위한 시뮬레이션 결과에 초점이 맞추어져 있다. 이 모델링을 적용한 결과, 수분 포화도가 상태에 따라 상이하게 나타남을 알 수 있었고, 또한 정적 수분 조절 요소에 따라 최적 상태가 모든 동적 분포에 따라 달라짐을 알 수 있었다.

Characterization of Electrochemical Ammonia Electrolysis Using a Platinum Electrode for Anodic Reaction (Pt포일 양극을 이용한 전기화학적 암모니아 수전해 특성 연구)

  • CHOI, JEONGMIN;KIM, HAKDEOK;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.337-342
    • /
    • 2022
  • In this study, a water electrolysis was studied to investigate the effect of ammonia on current density and H2 gas production. A H type cell with three electrodes was used and KOH solution was used as electrolyte. The conventional platinum foil was used for working electrode, whereas nickel foam was used for counter electrode. CV experiment was performed to see the activity of ammonia oxidation reaction. In addition, CP experiment was done to examine the dependence of Faraday efficiency of hydrogen on current density and NH3 concentration. The CV result shows the 0.5M NH3 concentration required for highest current density and reliable operation. The CP result shows the increased current density leads to higher H2 generation. The higher H2 production and subsequent energy efficiency was observed for 0.5M NH3 using a Pt/13%Rh coil for a cathode as compared to those in water electrolysis.

Treatment of reactive dyes wastewater by electrochemical method (전기화학적인 방법에 의한 반응성 염료폐수의 처리)

  • Yu, Jae-Jeong;Jeon, Seong-Hwan;Park, Jeong-Min;Jeong, Jae-Ho;Park, Sang-Jeong;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.245-251
    • /
    • 2002
  • Reactive dyes waste water, a toxic and refractory pollutant, was treated by an electrochemical method using $Ti/IrO_2$ as anode and Stainless Steel 316 as cathode. In this technique, sodium chloride as an electrolyte was added. A number of experiments were run in a batch system. Artificial samples (reactive blue 19, red 195, yellow 145) were used. Operation parameters, such as supporting electrolyte concentration, current density, pH and sample concentration have been investigated for their influences on COD and color removal efficiencies during electrolysis. After 5 and 90 minites of eletrolysis, color was reduced by 51.5% and 98.9% respectively. Under the condition of current density $10A/dm^2$, NaCl concentration 12mg/l and pH 3, 62.9% of $COD_{Cr}$ was removed after electrolysis for 90 minites. The optimum condition of color removal and COD reduction in this work was found to be the following : pH 3, sodium chloride concentration 20g/l, current density $10A/dm^2$. As a result, we confirmed to be effective to color removal and reduction of refractory organic material.

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

Water Repellency on a Nanostructured Superhydrophobic Carbon Fibers Network

  • Ko, Tae-Jun;Her, Eun-Kyu;Shin, Bong-Su;Kim, Ho-Young;Lee, Kwang-Ryeol;Hong, Bo-Ki;Kim, Sae-Hoon;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.224-224
    • /
    • 2012
  • For decades, carbon fiber has expanded their application fields from reinforced composites to energy storage and transfer technologies such as electrodes for super-capacitors and lithium ion batteries and gas diffusion layers for proton exchange membrane fuel cell. Especially in fuel cell, water repellency of gas diffusion layer has become very important property for preventing flooding which is induced by condensed water could damage the fuel cell performance. In this work, we fabricated superhydrophobic network of carbon fiber with high aspect ratio hair-like nanostructure by preferential oxygen plasma etching. Superhydrophobic carbon fiber surfaces were achieved by hydrophobic material coating with a siloxane-based hydrocarbon film, which increased the water contact angle from $147^{\circ}$ to $163^{\circ}$ and decreased the contact angle hysteresis from $71^{\circ}$ to below $5^{\circ}$, sufficient to cause droplet roll-off from the surface in millimeter scale water droplet deposition test. Also, we have explored that the condensation behavior (nucleation and growth) of water droplet on the superhydrophobic carbon fiber were significantly retarded due to the high-aspect-ratio nanostructures under super-saturated vapor conditions. It is implied that superhydrophobic carbon fiber can provide a passage for vapor or gas flow in wet environments such as a gas diffusion layer requiring the effective water removal in the operation of proton exchange membrane fuel cell. Moreover, such nanostructuring of carbon-based materials can be extended to carbon fiber, carbon black or carbon films for applications as a cathode in lithium batteries or carbon fiber composites.

  • PDF

Thermal managing effects by cooling channels on performance of a PEMFC (냉각채널 열관리에 따른 고분자연료전지의 성능영향 연구)

  • Sohn, Young-Jun;Kim, Min-Jin;Park, Gu-Gon;Kim, Kyoung-Youn;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.373-373
    • /
    • 2009
  • Relative humidity, membrane conductivity and water activity are critical parameters of polymer electrolyte membrane fuel cells (PEMFC) for high performance and reliability. These parameters are closely related with temperature. Moreover, the ideal values of these parameters are not always identical along the channels. Therefore, the cooling channel design and its operating condition should be well optimized along the all location of the channels. In the present study, we have performed a numerical investigation on the effects of cooling channels on performance of a PEMFC. Three-dimensional Navier-Stokes equations are solved with the energy equation including heat generated by the electrochemical reactions in the fuel cell. The present numerical model includes the gas diffusion layers (GDL) and serpentine channels for both anode and cathode gas flows, as well as cooling channels. To accurately predict the water transport across the membrane, the distribution of water content in the membrane is calculated by solving a nonlinear differential equation with a nonlinear coefficient, i.e., the water diffusivity which is a function of water content as well as temperature. Main emphasis is placed on the heat transfer between the solid bipolar plate and coolant flow. The present results show that local current density is affected by cooling channels due to the change of the oxygen concentration and the membrane conductivity as well as the water content. It is also found that the relative humidity is influenced by the generated water and the gas temperature and thus it affects the distribution of fuel concentration and the conductivity of the membrane, ultimately fuel cell performance. Unit-cell experiments are also carried out to validate the numerical models. The performance curves between the models and experiments show reasonable results.

  • PDF

An Electrochemical Evaluation of the Corrosion Property on the Welded Zone of Sea Water Pipe according to Welding Materials (용접 재료 별 해수 배관 용접부위의 부식 특성에 관한 전기화학적 평가)

  • Kim, Jin-Gyeong;Won, Chang-Uk;Jo, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Moon, Kyung-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • The sea water pipe of a ship's engine room is a severely corrosive environment caused by fast flawing sea water containing chloride ions and high conductivity. Therefore, leaking of sea water may occur as a result of local corrosion of the welded zone. Leaking is usually controlled by various welding methods. In this study, when the sea water pipe is welded with certain welding methods and welding electrodes, the corrosion resistance of WM (Welding metal) and HAZ (Heat affected zone) was investigated using electrochemical methods. Although the corrosion potential of the HAZ is higher than that of WM, the corrosion resistance of WM is superior to HAZ. However, when WM and HAZ are both opened to the sea water, the WM part with the anode was more seriously corroded than was the HAZ of the cathode by performance of a galvanic cell due to difference of the corrosion potential between HAZ and WM. In particular TIG welding showed relatively good results in corrosion resistance of both HAZ and WM compared to other welding methods.

Optimization of Operating Parameters and Components for Water Electrolysis Using Anion Exchange Membrane (음이온 교환막 알칼리 수전해를 위한 운전 조건 및 구성요소의 최적화)

  • Jang, Myeong Je;Won, Mi So;Lee, Kyu Hwan;Choi, Sung Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.159-165
    • /
    • 2016
  • The hydrogen has been recognized as a clean, nonpolluting and unlimited energy source that can solve fossil fuel depletion and environmental pollution problems at the same time. Water electrolysis has been the most attractive technology in a way to produce hydrogen because it does not emit any pollutants compared to other method such as natural gas steam reforming and coal gasification etc. In order to improve efficiency and durability of the water electrolysis, comprehensive studies for highly active and stable electrocatalysts have been performed. The platinum group metal (PGM; Pt, Ru, Pd, Rh, etc.) electrocatalysts indicated a higher activity and stability compared with other transition metals in harsh condition such as acid solution. It is necessary to develop inexpensive non-noble metal catalysts such as transition metal oxides because the PGM catalysts is expensive materials with insufficient it's reserves. The optimization of operating parameter and the components is also important factor to develop an efficient water electrolysis cell. In this study, we optimized the operating parameter and components such as the type of AEM and density of gas diffusion layer (GDL) and the temperature/concentration of the electrolyte solution for the anion exchange membrane water electrolysis cell (AEMWEC) with the transition metal oxide alloy anode and cathode electrocatalysts. The maximum current density was $345.8mA/cm^2$ with parameter and component optimization.

The Operating Condition and Flow Field Design Effect on the Anode Water Management of a Proton Exchange Membrane Fuel Cell (PEMFC) (운전조건 및 유로형상에 따른 고체고분자형 연료전지의 수소극에서의 수분관리)

  • Hong, In Kwon;Kim, Sunhoe
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.518-521
    • /
    • 2011
  • A PEMFC single cell with the active area of $25cm^2$ was used to verify the effect of water management in the anode. Water management is one of the most critical operating variables. In this paper the effect of operating condition change, such as anode humidification and temperature, was investigated under constant current density of $200mA/cm^2$ where possible anode flooding operating area. Also experiments to observe the effect of the anode and cathode stoichiometry change and flow field design on the water management were performed. The water management was effected by the stoichimetry change. The temperature and humidification change also affected the fuel cell performance.