Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.5.518

The Operating Condition and Flow Field Design Effect on the Anode Water Management of a Proton Exchange Membrane Fuel Cell (PEMFC)  

Hong, In Kwon (Department of Chemical Engineering, Dankook University)
Kim, Sunhoe (Department of New Energy & Resource Engineering, Sangji University)
Publication Information
Applied Chemistry for Engineering / v.22, no.5, 2011 , pp. 518-521 More about this Journal
Abstract
A PEMFC single cell with the active area of $25cm^2$ was used to verify the effect of water management in the anode. Water management is one of the most critical operating variables. In this paper the effect of operating condition change, such as anode humidification and temperature, was investigated under constant current density of $200mA/cm^2$ where possible anode flooding operating area. Also experiments to observe the effect of the anode and cathode stoichiometry change and flow field design on the water management were performed. The water management was effected by the stoichimetry change. The temperature and humidification change also affected the fuel cell performance.
Keywords
fuel cell; flow field; hydrogen; water management;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, S. Liu, H. Wang, and J. Shen, J. Power Sources, 165, 739 (2007).   DOI   ScienceOn
2 G. Maggio, V. Recupero, and C. Mantegazza, J. Power Sources, 62, 167 (1996).   DOI   ScienceOn
3 D. Picot, R. Metkmeijer, J. J. Bezian, and L. Rouveyre, J. Power Sources, 75, 251 (1998).   DOI   ScienceOn
4 F. N. Buchi and S. Srinivasan, J. Electrochem. Soc., 144, 2767 (1997).   DOI   ScienceOn
5 S. H. Chan, S. K. Goh, and S. P. Jiang, Electrochim. Acta, 48, 1905 (2003).   DOI   ScienceOn
6 M. Noponen, T. Mennola, M. Mikkola, T. Hottinen, and P. Lund, J. Power Sources, 106, 304 (2002).   DOI   ScienceOn
7 T. H. Yang, Y. G. Yoon, C. S. Kim, S. H. Kwak, and K. H. Yoon, J. Power Sources, 106, 328 (2002).   DOI   ScienceOn
8 S. H. Kwak, T. H. Yang, C. S. Kim, and K. H. Yoon, J. Power Sources, 118, 200 (2003).   DOI   ScienceOn
9 S. Shimpalee and J. W. Van Zee, Int. J. Hydrogen Energy, 32, 842 (2007).   DOI   ScienceOn
10 S. Shimpalee, S. Greenway, and J. W. Van zee, J. Power Source, 160, 398 (2006).   DOI   ScienceOn
11 S. S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, and H. H. Tsai, Energy Conversion & Management, 47, 1868 (2006).   DOI   ScienceOn
12 X. Li and I. Sabir, Int. J. Hydrogen Energy, 30, 359 (2005).   DOI   ScienceOn
13 X. Zhou, W. Ouyang, C. Liu, T. Lu, W. Xing, and L. An, J. Power Sources, 158, 1209 (2006).   DOI   ScienceOn
14 A. S. Arico, P. Creti, V. Baglio, E. Modica, and V. Antonucci, J. Power Sources, 91, 202 (2000).   DOI   ScienceOn
15 X. Li and I. Sabir, Int. J. Hydrogen Energy, 30, 359 (2005).   DOI   ScienceOn
16 X. Zhou, W. Ouyang, C. Liu, T. Lu, W. Xing, and L. An, J. Power Sources, 158, 1209 (2006).   DOI   ScienceOn
17 W. Schmittinger and A. Vahidi, J. Power Sources, 180, 1 (2008).   DOI   ScienceOn