• 제목/요약/키워드: Cathode pressure

검색결과 229건 처리시간 0.037초

리튬 2차 전지용 양극활물질 LiMO2(M=Co,Ni)의 온도와 산소 분압에 따른 상전이 거동 (Phase Evolution in LiMO2(M=Co,Ni) Cathode Materials for Secondary Lithium Ion Batteries : Effect of Temperature and Oxygen Partial Pressure)

  • 황성주;김호진;정연욱;이준형;김정주
    • 한국세라믹학회지
    • /
    • 제42권4호
    • /
    • pp.292-297
    • /
    • 2005
  • 출발원료로 $Li_{2}CO_{3},\;Co_{3}O_{4}$와 NiO를 사용하여 고상반응법으로 $LiMO_{2}(M=Co,Ni)$를 합성하였다. $LiCoO_{2}$는 저온$T=400^{\circ}C$에서 스피넬구조를 형성하고 온도가 증가$(T\ge600^{\circ}C)$되면 층상구조로 상전이 한다. 우리는 열처리 온도와 시간을 변수로 $LiCoO_{2}$의 스피넬구조에서 층상구조로의 상전이 거동을 관찰하였다. 스피넬구조에서 층상구조로의 상전이 속도는 스피넬상의 농도에 1차 비례하고 상전이하는 활성화 에너지는 약 6.76 kcal/mol이다. 출발원료로 스피넬구조인 $Co_{3}O_{4}$ 대신 암염 구조인 CoO를 사용하면 저온$(T=500^{\circ}C)$에서부터 층상구조가 형성되고 스피넬구조는 관찰되지 않는다. $LiNiO_{2}$는 온도가 증가함에 따라 층상구조에서 암염구조로 상전이 한다. $LiNiO_{2}$의 고온상인 암염구조는 저온에서 disordering/ordering에 의해 쉽게 층상구조로 되돌아가는 상전이 거동을 보인다. 반면 $LiCoO_{2}$에서는 층상구조에서 암염구조로의 상전이가 쉽게 일어나지 않는다. 이온반경비 $Li^+/Co^{3+}$ 보다 큰 것이 $LiCoO_{2}$의 층상구조가 고온에서 $LiNiO_{2}$의 층상구조보다 더 안정할 수 있는 이유 중의 하나로 생각된다.

스퍼터링법에 의해 제작된 WO3 박막의 광분해 특성 (Photocatalyst characteristic of WO3 thin film with sputtering process)

  • 이붕주
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.420-424
    • /
    • 2016
  • 본 연구에서는 지속적으로 심각한 대기오염의 문제로 실내 공기청정의 중요성이 대두되는 점을 감안하여 광촉매 단위기술을 개발하고자 건식 박막 공정 중 일반적으로 사용되어지는 RF 마그네트론 스퍼터링을 이용하여 $WO_3$ 단층막을 증착하였다. 초기 진공도는 $1.8{\times}10^{-6}$ [Torr]를 기준하여 최적의 스퍼터링 공정조건인 RF 100[W], 7[mTorr]진공 조건에서 Ar:$O_2$ 반응가스의 비율을 70[sccm] : 2[sccm]으로 하여 제작된 $WO_3$ 단층막은 380[nm]-780[nm]의 가시광 영역에서 80% 이상의 높고 일정한 광투과 특성을 확인하였다. 공기 청정 효과를 확인 위해 제작된 $WO_3$ 박막의 광촉매 특성을 조사하기 위해 메틸렌블루 내에서의 흡광도 및 농도변화를 광조사 시간 변화에 따라 측정하였다. 그 흡광도 측정결과 시간에 따라 흡광도 특성이 보임을 확인하였고, 5시간 경과 후 기존 메틸렌블루 농도 대비 80% 수준의 농도로 낮아지는 것을 확인하였다. 이런 결과로 부터 스퍼터링법에 의해 제작된 기능성 $WO_3$박막의 광분해 특성을 통해 형광등의 반사갓 혹은 LED등의 렌즈에 활용 된다면 차세대 조명원의 공기청정 효과를 증진시킬 수 있는 박막을 개발하였다.

In Situ NMR 진단용 원통형 직접 메탄올 연료전지 (Tubular Type Direct Methanol Fuel Cell for in situ NMR Diagnosis)

  • 조한익;엄명섭;한기성;한옥희;하흥용;김수길
    • 전기화학회지
    • /
    • 제12권4호
    • /
    • pp.329-334
    • /
    • 2009
  • 본 연구는 연료전지 운전시 전극 촉매 및 전해질막 내에서 발생하는 연료 및 산화제의 산화/환원 반응 메커니즘, 이동현상, 구성품 열화현상 등을 핵자기 공명 (NMR, Nuclear Magnetic Resonance)을 이용하여 연료전지의 분해나 시료 채취 없이 제자리 (in situ) 분석할 수 있는 진단장치용 연료전지 개발에 관한 것이다. NMR에 사용되는 연료전지는 특수하게 제작된 TCD (Toroid Cavity Detector) 탐침 내부에서 작동하여야 하며, TCD 탐침이 가지는 기하학적 제한 요소들로 인해 일반적인 평판형 연료전지와 달리 원통형으로 제작된다. 이로 인해 반응물의 공급이나 생성물의 제거가 어려우며 누수 현상 및 불균일한 압력 분배가 발생하여 성능이 낮다. 따라서, in situ NMR 분석용 연료전지가 가지는 구조상의 특징인 원통형에 적합한 유로를 설계하고 제작하여 물질 전달 특성을 개선해야 할 필요성이 있다. 본 연구에서는 NMR 장비 내의 자기장에 영향을 미치지 않는 비자성 물질을 이용해 원 통형 공기극 유로를 개발하여, 산소의 공급 및 반응물의 제거를 원활하게 하였다. 또한, 체결 압력을막-전극 접합체에 균일하게 분배하여 누수 및 누액을 차단하였다. 이를 통해, 상온에서 약 $36mW/cm^2$의 우수한 성능을 나타내는 in situ NMR 진단용 직접 메탄올연료전지 시스템을 개발하였다.

The Effect of Barrel Vibration Intensity to the Plating Thickness Distribution

  • Lee, Jun-Ho;Roselle D. Llido
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 추계학술발표회 초록집
    • /
    • pp.15-15
    • /
    • 1999
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the conventional rotating barrel. vibrational barrel (vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components, The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed that the average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value, Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components, However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. $2HD{\;}+{\;}e{\;}{\rightarrow}20H{\;}+{\;}H_2$ Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure thereby resulting to bad plating condition. 1 lot of chip was divided into two equal partion. Each portion was loaded to the same barrel one after the other. Nickel plating and tin-lead plating was performed in the same station. Portion A maintained the normal barrel vibration intensity and portion B vibration intensity was increased two steps higher. All other parameters, current, solution condition were maintained constant. Generally, plating method find procedures were carried out in a best way to maintained the best plating condition. After plating, samples were taken out from each portion. molded and polished. Plating thickness was investigated for both. To check consistency of results. 2nd trial was done now using different lot of another characteristics.

  • PDF

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

고압 매크로에멀젼을 이용한 전해도금에 관한 연구 (A Study on the Electroplating using Macroemulsion in High Pressure)

  • 박지영;양준열;서동진;유기풍;임종성
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.53-59
    • /
    • 2005
  • 본 연구에서는 계면활성제를 이용하여 초임계이산화탄소와 전해도금액의 매크로에멀젼을 형성한 후 양극과 음극을 통해 통전시켜 초임계에멀젼 전해도금을 수행하였다. 계면활성제로는 친이산화탄소기와 친수기를 동시에 지닌 sodium salt of bis (2,2,3,3,4,4,5,5-octafluoro-1-pentanol) sulfosuccinate를 사용하였으며 (+)극과 (-)극으로 니켈판과 구리판을 각각 사용하였다. 초임계매크로에멀젼 상태에서 도금된 니켈표면과 기존의 상압 상태에서 도금된 니켈표면을 비교해 본 결과 이산화탄소/니켈도금액 매크로에멀젼에 의해 도금된 니켈표면은 기존 방법에 의한 것보다 더 균일하였다. 계면활성제의 농도와 도금액 양이 도금에 미치는 영향을 살펴보기 위하여 도금액에 첨가한 계면활성제의 농도를 2, 4, 7 wt% 변화시켰으며 도금 반응셀 내에서 차지하는 도금액의 부피를 10 vol%에서 70 vol%까지 증가시켰다. 그리고 연속상의 영향을 알아보기 위하여 초임계이산화탄소 대신에 프로판을 사용하여 그 결과를 살펴보았다. 매크로에멀젼이 형성되는 농도 이상에서는 계면활성제의 농도가 높아질수록 전류량과 도금되는 니켈 양이 모두 감소하였으며, 도금액의 부피가 증가할수록 전류량과 전기전도도가 높아지고 도금되는 니켈 양이 증가하였다. 또한, 연속상의 경우, 프로판보다 이산화탄소가 우수한 도금효과를 보임을 알 수 있었다.

적외선 레이저에 의한 방전 유도 기술의 방전 가공 장치에의 적용 연구 (A Study on the Discharge Guide Technology by infrared Laser Applied to Discharge Processing Devices)

  • 조정수;이동훈;남경훈
    • 조명전기설비학회논문지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 1999
  • 최근 들어 레이저를 이용한 방전 제어 기술에 대한 관심이 여러 분야에서 고조되고 있다. 특히, 레이저의 우수한 특성 때문에 Electro-Discharge Machining(EDM)분야에서 각광을 받고 있다. 본 연구에서는 펄스형 Nd:TAG 레이저를 이용해서 방전 가공 장치에 적용될 수 있는 방전 유도 기술에 관한 기초 데이터의 확보를 위한 실험이 수행되었다. 레이저에 의한 직류 발전 유도 실험의 동작 압력의 범위는 0.2~20 torr였다. 진공조 내의 압력 P와 전극간의 거리 d에 따른 최소 직류 레이저 방전 유도 전압 $V_{G.min}$을 측정하였으며, $V_{G.min}$이 자연 방전전압 VND보다 훨씬 낮고 P.d값에 따른 $V_{G.min}$$V_{ND}$와 유사한 경향을 가짐을 확인하였다. 그리고 레이저 출력 에너지 $E_{out}$은 플래쉬램프의 전류 펄스폭 $t_p$가 증가함에 따라 감소하고 $t_p$값이 증가할수록 $V_{G.min}$은 방전 지속 시간 동안에 조사되는 광자량이 감소하기 때문에 더 높아짐을 알 수 있었다. 또한 레이저에 의한 방전 유도 가능범위와 레이저 출력에 따른 방전 유도 특성을 조사하였다.

  • PDF

저가습 조건에서 냉각 유체의 고분자전해질 연료전지에 대한 영향 (Effect of Coolant on PEMFC Performance in Low Humidification Condition)

  • 이흥주;송현도;권준택;김준범
    • 전기화학회지
    • /
    • 제10권1호
    • /
    • pp.25-30
    • /
    • 2007
  • 고분자전해질 연료전지의 성능은 cell 온도, 전체 압력, 반응 기체의 부분 압력 상대습도와 같은 다양한 요인들에 의해 영향을 받는다. 이온화된 수소 이온은 $H_3O^+$의 형태로 membrane을 통과하여 물을 생성하는 반응으로 전기를 발생시킨다. 대용량 연료전지에서는 부수적으로 생성되는 열을 제거하거나 다른 용도로 사용할 목적으로 냉각시스템이 필요하다. 냉각수의 전도도가 상승할 경우에 연료전지에서 발생된 전류의 일부가 냉각수를 통하여 누설되어 연료전지의 성능을 감소시킬 수 있다. 본 연구에서는 3차 증류수와 ethylene glycol이 함유되어 있는 부동액을 사용하여 저항 수치 변화를 관찰하는 실험을 수행하였다. 3차 증류수의 경우 저항값이 설정치 이하로 내려가는데 약 28일이 소요되었고, 연료전지의 운전에 의한 영향은 관찰되지 않았다. 부동액을 냉각수로 사용한 경우는 43일이 지나도 저항값이 설정치 이하로 내려가지는 않았지만, stack 분리판의 접착부에 이상이 생긴 것으로 추정되는 연료전지의 성능 저하가 발생하여 전도도 실험을 중단하였다. 고분자전해질 연료전지에서는 수소이온의 이온전도성 저하를 방지하기 위하여 외부에서 가습하여 주는 방식이 일반적이지만, 소용량 연료전지에서는 무가습 조건을 적용하여 연료전지의 효율을 높이고 제작단가도 경감할 수 있다. 이를 위하여 저가습 및 무가습 실험을 수행하였으나 대용량 연료전지에서는 양측 무가습인 경우에 $50{\sim}60^{\circ}C$ 이상의 고온에서 성능이 발현되기 어려운 것으로 관찰되었다. 냉각수의 유량을 다르게 하여 실험을 수행한 경우에는 0.78L/min과 같은 낮은 유량에서 출구온도와 입구온도를 측정하여 본 결과 두 온도 사이에 ${\Delta}T$가 다른 유량에서보다 크게 발생하여 성능이 감소된 것으로 사료된다. 이와 같이 냉각수의 온도와 유량을 다르게 하여 양측 무가습 실험을 수행한 결과, 연료전지의 성능이 cell 온도에 직접적인 연관이 있는 것으로 관찰되었다.

용융탄산염 연료전지용 in-situ 소결된 Ni-Al 합금 연료극 개발 (Development of in-situ Sintered Ni-Al Alloy Anode for Molten Carbonate Fuel Cell)

  • 천현아;윤성필;한종희;남석우;임태훈
    • 전기화학회지
    • /
    • 제9권3호
    • /
    • pp.124-131
    • /
    • 2006
  • 기존의 용융탄산염 연료전지용 연료극인 Ni-Cr전극은 제조과정이 복잡하며, 운전조건에서 전극의 소결과 creep현상으로 인하여 전극의 기공률과 두께가 감소하는 문제점이 있어 상용화에 걸림돌이 되고 있다. 이에 본 연구에서는 Ni-Cr계 전극보다 creep저항성이 우수하다고 알려져 있는 Ni-Al계 합금을 사용하였다. 또한 공정의 단순화로 비용을 절감시키기 위해, 소성과정을 제외하고 tape casting과 건조과정을 거친 green sheet를 단위전지에 장착하여 전처리 과정 중에 소결시키는 in-situ 소결법에 대해 연구하였다. 그러나 기존의 전처리 방법을 이용한 단위전지 평가에서 Ni-Al 합금의 상분리 현상으로 인해 기대하였던 creep저항성 향상을 확인하지 못했고, 운전중 Ni-Al합금 연료극에 단위전지의 구성요소인 matrix 기공크기보다 작은 기공(${\leq}0.4{\mu}m$)이 다량 생성되어 전해질 재분배를 일으켜 성능이 하락하는 문제점이 나타났다. 따라서 이러한 문제점을 해결하고자 전처리 조건을 변화시키며 실험을 수행하였다. 그 결과, 비활성 기체인 질소를 일정한 구간에 사용함으로써 기존 전처리에서 발생하였던 Ni-Al 합금의 상분리 현상을 억제할 수 있었으며 이로 인해 creep저항성 또한 향상시킬 수 있었다. 그러나 운전 중 생성되는 matrix기공크기보다 작은 기공(${\leq}0.4{\mu}m$) 형성비율은 억제할 수 없었다. 위의 전처리 조건을 가지고 단위전지 운전실험을 하였고, 전해질 함침비율을 조절함에 따라 성능을 향상시킬 수 있었으며 2000시간 동안 일정하게 유지함을 확인하였다. 이로부터 기존의 소성전극과 비교하여 많은 장점을 가지고 있는 in-situ 소결법의 가능성을 확인할 수 있었다.