• Title/Summary/Keyword: Cathode catalyst

Search Result 147, Processing Time 0.029 seconds

The effects of conductivity and CNT cathode on electricity generation in air-cathode microbial fuel cell (공기양극 미생물연료전지 시스템에서 전력발생특성에 미치는 전기전도도와 CNT 양극의 영향)

  • Yoo, Kyu-Seon;Park, Hyun-Soo;Song, Young-Chae;Woo, Jung-Hui;Lee, Chae-Young;Chung, Jae-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.355-360
    • /
    • 2012
  • The characteristics of power generation were investigated by changing the electrical conductivity from 10 to 40mS/cm using air-cathode microbial fuel cell, which had graphite fiber fabric(GFF) anode. There were three kinds of cathode used: one was carbon cloth cathode coated with Pt, another was carbon nanotube(CNT) cathode with non-precious catalyst of Fe-Cu-Mn, and the other was carbon nanotube(CNT) cathode without any catalyst. When it was operated in batch mode, power density of 1369.5mW/$m^2$ was achieved at conductivity of 20mS/cm. Power density from MFC with CNT cathode coated with multi-catalyst of Fe-Cu-Mn was shown about 985.55mW/$m^2$, which was 75.1% compared the power density of carbon cloth coated with Pt. This meant that CNT cathode coated with multi-catalyst of Fe-Cu-Mn could be an alternative of carbon cloth cathode.

Application of Pt/C (60 wt.%) on electrode catalyst layer of direct methanol fuel cell (백금담지 촉매의 직접메탄올 연료전지 환원전극 적용)

  • Cho, Yong-Hun;Cho, Yoon-Hwan;Park, Hyun-Seo;Jung, Nam-Gee;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.188-190
    • /
    • 2007
  • The MEA with the catalyst layer containing PtRu black and 60 wt. %Pt/C as their anode and cathode catalysts. For find to effect of carbon support, the MEA with platinum black for cathode catalyst was fabricated. The performance of the MEA with the catalyst layer containing (PtRu black:60 wt.% Pt/C) as their anode and cathode catalyst has shown competitively higher value than the performance of the MEA with the catalyst layer containing (PtRu black:Pt black) as their anode and cathode catalyst.

  • PDF

Synthesis and Electrochemical Evaluation of La1-xSrxCoO3 Cathode Material for Zinc Air Secondary Batteries Application (아연공기이차전지용 La1-xSrxCoO3 양극촉매의 제조 및 이를 적용한 양극의 전기화학적 특성연구)

  • Eom, Seung-Wook;Sun, Yang-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.447-452
    • /
    • 2008
  • We synthesized nano-sized $La_{1-x}Sr_xCoO_3$ ($x=0.1{\sim}0.4$) cathode catalyst for the zinc air secondary batteries by citrate method, And we measured the cathode's electrochemical characteristics according to content of strontium compose the cathode catalyst. We controlled the pH of precursor solution by 10 in the process of manufacturing the precursor, We heat treated the prepared precursor at various calcination temperature ($500{\sim}900^{\circ}C$), and examined the optimum calcinations temperature by XRD analysis and electrochemical evaluation. We examined the ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) performance of the prepared $La_{1-x}Sr_xCoO_3$ catalyst powder. When we consider ORR and OER performance simultaneously, $La_{0.7}Sr_{0.3}CoO_3$ catalyst has shown the best performance because of its lowest voltage deference between charge and discharge.

Influence of the cathode catalyst layer thickness on the behaviour of an air breathing PEM fuel cell

  • Ferreira-Aparicio, Paloma;Chaparro, Antonio M.
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.73-84
    • /
    • 2014
  • Fuel cells of proton exchange membrane type (PEMFC) working with hydrogen in the anode and ambient air in the cathode ('air breathing') have been prepared and characterized. The cells have been studied with variable thickness of the cathode catalyst layer ($L_{CL}$), maintaining constant the platinum and ionomer loads. Polarization curves and electrochemical active area measurements have been carried out. The polarization curves are analyzed in terms of a model for a flooded passive air breathing cathode. The analysis shows that $L_{CL}$ affects to electrochemical kinetics and mass transport processes inside the electrode, as reflected by two parameters of the polarization curves: the Tafel slope and the internal resistance. The observed decrease in Tafel slope with decreasing $L_{CL}$ shows improvements in the oxygen reduction kinetics which we attribute to changes in the catalyst layer structure. A decrease in the internal resistance with $L_{CL}$ is attributed to lower protonic resistance of thinner catalyst layers, although the observed decrease is lower than expected probably because the electronic conduction starts to be hindered by more hydrophilic character and thicker ionomer film.

Electricity Generation by Microbial Fuel Cell Using Microorganisms as Catalyst in Cathode

  • Jang, Jae Kyung;Kan, Jinjun;Bretschger, Orianna;Gorby, Yuri A.;Hsu, Lewis;Kim, Byung Hong;Nealson, Kenneth H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1765-1773
    • /
    • 2013
  • The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were $2.3{\pm}0.1$ and $2.6{\pm}0.2mA$, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode ($430W/m^3$ cathode compartment) than the abiotic cathode MFC ($257W/m^3$ cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron-consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction.

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min;Kim, Sang-Kyung;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

Field emission display with catalysis cathode film material for graphite nano fiber

  • Kageyama, Kagehiro;Kojima, Tomoaki;Hirakawa, Masaaki;Sasaki, Takaei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.146-149
    • /
    • 2006
  • We developed new FED cathode film material that has catalysis function for graphite nano fiber. Using the cathode film with catalyst, we can simplify the FED process. It is composed of Cr, Fe-Ni catalyst. Fabricating FED panel with the film, we confirmed good emission performance of the panel.

  • PDF

A Study on the Performance Characteristics of Direct Methanol Fuel Cell with Changing of Catalyst Loading (촉매량 변화에 따른 직접 메탄올 연료전지의 성능 특성에 관한 연구)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.467-473
    • /
    • 2008
  • This study is to investigate the influence of catalyst loading quantity on the direct methanol fuel cell (DMFC) performance. In this paper, Pt-Ru and Pt-black loading as the catalyst were varied from 1 to $4mg/cm^2$ at the anode and cathode, respectively. The experiment was conducted with single fuel cell consisted of $5cm^2$ effective electrode area, serpentine type flow pattern and Nafion 117 membrane. Also, AC impedance and methanol crossover current were measured to investigate the performance loss precisely. As a result, the performance of fuel cell was significantly increased with the increase of cathode catalyst loading. However, the performance did not increase further above a certain Pt-Ru catalyst loading as the increase of anode catalyst loading.

Position-Dependent Cathode Degradation of Large Scale Membrane Electrode Assembly for Direct Methanol Fuel Cell (직접 메탄올 연료전지용 대면적 막-전극 접합체 공기극의 위치별 열화 현상)

  • Kim, Soo-Kil;Lee, Eun-Sook;Kim, Yi-Young;Kim, Jang-Mi;Joh, Han-Ik;Ha, Heung-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • With respect to the durability of large scale ($150cm^2$) membrane electrode assembly (MEA) of direct methanol fuel cell (DMFC), degradation phenomena at cathode is monitored and analyzed according to the position on the cathode surface. After constant current mode operation of large scale MEA for 500 hr, the MEA is divided into three parts along the cathode channel; (close to) inlet, middle, and (close to) outlet. The performance of each MEA is tested and it is revealed that the MEA from the cathode outlet of large MEA shows the worst performance. This is due to the catalyst degradation and GDL delamination caused by flooding at cathode outlet of large MEA during the 500 hr operation. Particularly on the catalyst degradation, the loss of electrochemically active surface area (ECSA) of catalyst gets worse along the cathode channel from inlet to outlet, of which the reason is believed to be loss of catalysts by dissolution and migration rather than their agglomeration. The extent of loss in the performance and catalyst degradation has strong relation to the cathode flooding and it is required to develop proper water management techniques and separator channel design to control the flooding.