• 제목/요약/키워드: Cathode Luminescence

검색결과 44건 처리시간 0.028초

Enhanced Cathode-Luminescence in a InxGa1-xN/InyGa1-y Green Light Emitting Diode Structure Using Two-Dimensional Photonic Crystals

  • Choi, Eui-Sub;Lee, Jae-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.276-279
    • /
    • 2008
  • We report on the enhancement of cathode-luminescence in an $In_xGa_{1-x}N/In_yGa_{1-y}$ green light emitting diode structure using two-dimensional photonic crystals. The square lattice arrays of photonic crystals with diameter/periodicity of 200/500 nm were fabricated by electron beam lithography. Inductively coupled plasma dry etching was used to etch and define photonic crystals. Three samples with different etch depths, i.e., 170, 95, and 65 nm, were constructed. Field emission scanning electron microscope analysis shows that air holes of photonic crystal structure with inverted-cone shapes were fabricated after dry etching. Cathode-luminescence measurement indicated that up to 30-fold enhancement of cathode-luminescence intensity has been achieved.

MgO 증착률에 따른 PDP 보호막 물성 및 방전 특성 분석 (The Analysis of the Discharging Characteristics and MgO protective layer by MgO Evaporation Rates for High-Efficiency PDP)

  • 김용재;권상직
    • 한국진공학회지
    • /
    • 제16권3호
    • /
    • pp.181-186
    • /
    • 2007
  • 본 연구에서는 플라즈마 디스플레이 패널의 방전 특성과 MgO 보호막 물성에 영향을 미치는 MgO 증착률에 대해 분석을 하였다. 물성 특성으로 결정 방향과 표면 거칠기 결정 구조 및 음극선 발광을 XRD (X-ray Diffraction), AFM (Atomic Force Microscopy), Mono-CL (Mono Cathode Luminescence analysis)등을 이용하여 측정하였고, 방전 특성으로는 방전개시전압과 방전 전류, 휘도를 진공 챔버와 오실로스코프 (TDS 540C), 전류 프로브 (TCP 312A), 휘도 색차계 (CS-100A)를 이용하여 측정하였다. 실험 결과 $5{\AA}/sec$의 증착률이 최적의 증착률임을 확인하였고, 또한 MgO의 증착률에 따라서 MgO 보호막의 물성특성이 변화하고 이에 의해서 전기적 광학적 특징이 영향을 받는 것을 확인하였다. 즉, 증착률 $5{\AA}/sec$을 기준으로 증착률이 증가할수록 (200) 결정 방향 및 음극선 발광의 밀도가 감소되고, 동작 전압은 증가하며 점차 효율이 나빠지는 경향을 보인다.

The Study of Luminescence Efficiency by change of OLED's Hole Transport Layer

  • Lee, Jung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.52-55
    • /
    • 2006
  • The OLEDs(Organic Light-Emitting Diodes) structure organizes the bottom layer using glass, ITO(indium thin oxide), hole injection layer, hole transport layer, emitting material layer, electron transport layer, electron injection layer and cathode using metal. OLED has various advantages. OLEDs research has been divided into structural side and emitting material side. The amount of emitting light and luminescence efficiency has been improved by continuing effort for emitting material layer. The emitting light mechanism of OLEDs consists of electrons and holes injected from cathode and anode recombination in emitting material layer. The mobilities of injected electrons and holes are different. The mobility of holes is faster than that of electrons. In order to get high luminescence efficiency by recombine electrons and holes, the balance of their mobility must be set. The more complex thin film structure of OLED becomes, the more understanding about physical phenomenon in each interface is needed. This paper observed what the thickness change of hole transport layer has an affection through the below experiments. Moreover, this paper uses numerical analysis about carrier transport layer thickness change on the basis of these experimental results that agree with simulation results.

이종 전극에 의한 OLED 전기적 특성 연구 (Electrical Characteristics of OLED using the Hetero-Electrode)

  • 이정호;서정하;정지훈;김영관;김영식;김영찬
    • 한국응용과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.274-278
    • /
    • 2004
  • In this study, hetero-electrode structures have been fabricated to increase luminescence efficiency. The presence of a thin layer of Sn or Ag at the organic-aluminum interface enhanced both electron injection efficiency and electroluminescence when compared to OLEDs using homogeneous electrode. In this paper, the effect of the cathode using Sn/Al hetero electrode structure is observed. Electric properties of the OLED using Sn/Al hetero cathode are improved in comparison of only Al cathode. The hetero-electrode existing different energy level induces the advanced structure of OLED can accumulate electron density. The luminescence efficiency of OLED with Sn/Al of Ag/Al cathode is higher because of their higher electron injection efficiency. And, the turn on voltage of the OLED device using Sn thin layer is lowest as about 10 V.

유기 전기 luminescence 다이오드 특성 (A Characterization on Organic Electro-luminescence)

  • 이한성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.165-169
    • /
    • 2007
  • Organic EL has been expected to adopt to a new styles of technology that make flat display after Tang & Vanslyke made food electric luminescence device in late 1980s. Their studies based on multi layer structure that consists of emitting layer and carrier transporting layer using proper organic material. In this study we made multi layer device using $Eu(TTA)_3(phen)$ as a luminescence material by PVD and investigate luminous properties of each device. But oxidization of organic layer by ITO, energy walls in both pole interface, contaminations of ITO surface, importance of protecting membrane, diffusive dimming of light to cathode organic layer, these causes of degradations are common facts of a macromolecule and micromolecule. We think these degradation caused by the impact of heat and electro-chemical factor, bulk effect and interface phenomenon, and raise a question.

  • PDF

유기 전기발광 소자에 관한 연구 (A Research on Organic Electro-luminescence)

  • 이한성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.82-85
    • /
    • 2005
  • Organic EL has been expected to adopt to a new styles of technology that make flat display after Tang & Vanslyke made good electric luminescence device in late 1980s. Their studies based on multi layer structure that consists of emitting layer and carrier transporting layer using proper organic material. In this study, we made multi layer device using $Eu(TTA)_3(phen)$ as a luminescence material by PVD and investigate luminous properties of each device. But oxidization of organic layer by ITO, energy walls in both pole interface, contaminations of ITO surface, importance of protecting membrane, diffusive dimming of light to cathode organic layer, these causes of degradations are common facts of a macromolecule and micromolecule. We think these degradation caused by the impact of heat and electro-chemical factor, bulk effect and interface phenomenon, and raise a question.

  • PDF

X선 검출기를 위해 특수용매 액상법으로 합성한 Gd2O3:Eu의 Europium(Eu) 함량에 따른 입자특성과 발광특성의 분석 (The particle properties and luminescence properties of Gd2O3:Eu using solution-combustion with various Eu content were analysis)

  • 김성현;김영빈;정숙희;김민우;오경민;박지군
    • 한국방사선학회논문지
    • /
    • 제2권3호
    • /
    • pp.11-18
    • /
    • 2008
  • 이 연구에서는 알코올과 증류수를 특정비율로 혼합한 특수용매를 사용하여 합성한 Gd2O3:Eu 나노 분말이 Europium(Eu)함량에 따라 어떤 입자특성과 발광특성을 가지게 되는지에 대하여 조사하였다. 액상법에 사용된 이 용매는 Gadolinium(Gd)과 Europium(Eu)의 용해되는 시간을 현저히 줄임으로써, 실험시간이 단축됨을 확인하였다. 이번 실험에서 Gd2O3:Eu 나노 powder 형광체의 입자특성은 SEM(scanning electron microscope)과 EDX(Energy Dispersive X-ray)를 사용하였으며, 나노 powder의 발광특성은 PL(Photoluminescence), CL(CathodeLuminescence)을 사용하여 측정하였다. 결정들은 30nm~40nm의 크기의 결정을 가졌고 발광특성은 약 620nm의 특정 파장에서 크게 반응함을 알 수 있었으며, Europium(Eu)함량이 1wt%에서 3wt%, 5wt%로 늘어날수록 Photon의 count가 증가하게 되어 발광효율이 증가함을 알 수 있었다.

  • PDF

활성제 첨가에 따른 $ZnGa_2O_4$ 형광체의 발광특성 (Cathode Luminescence Characteristics of $ZnGa_2O_4$ Phosphors with the doped activator)

  • 홍범주;이승규;김경환;박용서;최형욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.301-302
    • /
    • 2005
  • The $ZnGa_2O_4$:Cr phosphor was synthesized through solid-state reactions at the various molar ratio of Cr from 0.002 % to 0.01 %. The XRD patterns show that the Cr-doped $ZnGa_2O_4$ has a (311) main peak and a spinel phase. Also the emission wavelength shills from 510 to 705 nm in comparison with $ZnGa_2O_4$:Mn when Cr is doped in $ZnGa_2O_4$. These results indicate that $ZnGa_2O_4$ phosphors hold promise for potential applications in field-emission display devices with high brightness operating in full color regions.

  • PDF

MgO의 전자선 증착율에 따른 PDP 방전 특성 분석 (Analysis of PDP Discharging Properties Depending on Electron Beam Evaporation Rate of MgO Layer)

  • 김용재;권상직
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.716-719
    • /
    • 2007
  • The effects of the evaporation rate of MgO films using an electron beam on the MgO properties and the discharge characteristics of a plasma display panel (PDP) were investigated and analyzed. MgO films were deposited with the various MgO evaporation rates. The MgO properties such as the crystal orientation, the surface roughness, and the film structure were inspected using XRD (X-ray diffraction), AFM (atomic force microscopy). From the experiments and Paschen law, the maximum value of the secondary electron emission coefficient $({\gamma})$ was obtained at the evaporation rate of $5{\AA}/sec$. The XRD results and cathode-luminescence (CL) spectra show the ${\gamma}$ values are correlated with F/F+ centers of the molecular structure of MgO films. The minimum firing voltage and the maximum luminous efficiency were obtained at an evaporation rate of $5{\AA}/sec$. In the MgO film deposited at $5{\AA}/sec$, the (200) orientation and F+ center were most intensive.

진공 증착 투명 OLED 투과도 및 발광 특성 개선을 위한 Mesh 전극 연구 (A Study on Vacuum-deposited Transparent OLED to Improve Its Transmittance and Luminescence Characteristics with a Mesh Electrode)

  • 김영우;전용민;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.82-86
    • /
    • 2024
  • With the growing field and growing interest in transparent organic light-emitting diodes (TOLED) in the industry, various attempts are being made to improve the transmittance and performance of TOLED. TOLEDs are expected to be used in next-generation displays such as mixture reality (MR) displays, displayable windows, televisions, etc. This study presents a mesh TOLED with better transmittance and luminescence characteristics than existing TOLEDs through an in-situ vacuum deposition method that does not require additional processes such as photolithography and etching. In this study the mesh TOLED's cathode consists of Mg: Ag 1:9 electrode. Mesh patterns are interconnected with a 6 nm layer of interlayer. We approached transmittance improvement up to 30% at 555 nm at the cathode electrode with similar current injection character, also we improved lumination characteristics up to 23% at 7 V driving condition.

  • PDF