• Title/Summary/Keyword: Catenation

Search Result 3, Processing Time 0.023 seconds

Molecular Dynamics Simulation on Hydrogen Adsorption into Catenated Metal Organic Frameworks (분자 동역학을 이용한 상호 관통된 Metal Organic Framework의 수소 흡착에 관한 연구)

  • Lee, Tae-Bum;Kim, Dae-Jin;Jung, Dong-Hyun;Kim, Ja-Heon;Choi, Seung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.9-12
    • /
    • 2006
  • We performed molecular dynamics simulations on the conventional MOF, IRMOF-14 and the catenated MOF with two MOF chains, IRMOF13, to find out rational design and synthetic strategies toward efficient hydrogen storage materials. The molecular dynamics calculations were done using Universal force fields and the analysis of result was performed during the NVE dynamics after preliminary NVT dynamics at 77K. The results showed the density of adsorbed hydrogen molecules was increased in the various pores created by catenation of MOFs while the large amount of volume in conventional MOF was not effectively utilized to store hydrogen. Those calculation results commonly showed the proper control of pore si Be for hydrogen storage into MOF by catenation would be one of the efficient ways to increase hydrogen capacity of MOFs.

  • PDF

Synthesis of Polyimide Derived from 4-Methyl-1,2-phenylene Bis(4-aminobenzoate) and 4,4'-Hexafluoroisopropylidenediphthalic Anhydride

  • Byung Hyun Ahn
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • Aromatic diamine containing ortho catenation and methyl group was synthesized from 4-methyl catechol and 4-nitrobenzoyl chloride. Subsequently, a poly(amic acid) was prepared by reacting 4-methyl-1,2-phenylene bis(4-aminobenzoate) with 4,4'-hexafluoroisopropylidenediphthalic anhydride (6FDA). The resulting poly(amic acid) was transformed into a polyimide through chemical imidization. The polyimide formed was soluble in N-methyl-2-pyrrolidone (NMP) and could be cast into a flexible, transparent film. Furthermore, the polyimide exhibited a 5% weight loss at 380 ℃ in the nitrogen atmosphere.

CO2 Adsorption in Metal-organic Frameworks (금속유기구조체를 이용한 이산화탄소 흡착 연구)

  • Kim, Jun;Kim, Hee-Young;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.171-180
    • /
    • 2013
  • Metal organic frameworks (MOFs) are a class of crystalline organic-inorganic hybrid compounds formed by coordination of metal clusters or ions with organic linkers. MOFs have recently attracted intense research interest due to their permanent porous structures, large surface areas and pore volume, high-dispersed metal species, and potential applications in gas adsorption, separation, and catalysis. $CO_2$ adsorption in MOFs has been investigated in two areas of $CO_2$ storage at high pressures and $CO_2$ adsorption at atmospheric pressure conditions. In this short review, $CO_2$ adsorption/separation results using MOFs conducted in our laboratory was explained in terms of four contributing effects; (1) coordinatively unsaturated open metal sites, (2) functionalization, (3) interpenetration/catenation, and (4) ion-exchange. Zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs) were also considered as a candidate material.