• Title/Summary/Keyword: Catecholamine Release

Search Result 84, Processing Time 0.057 seconds

Mechanism of Epibatidine-Induced Catecholamine Secretion in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Lim, Geon-Han;Oh, Song-Hoon;Kim, Il-Sik;Kim, Il-Hwan;Woo, Seong-Chang;Lee, Bang-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.259-270
    • /
    • 2001
  • The present study was attempted to investigate the characteristics of epibatidine on secretion of catecholamines (CA) from the isolated perfused model of the rat adrenal gland, and to establish the mechanism of action. Epibatidine $(3{\times}10^{-8}\;M)$ injected into an adrenal vein produced a great inhibition in secretory response of CA from the perfused rat adrenal gland. However, upon the repeated injection of epibatidine $(3{\times}10^{-8}\;M)$ at 15 min-intervals, CA secretion was rapidly decreased after second injection of epibatidine. However, there was no statistical difference between CA secretory responses of both 1st and 2nd periods by the successive administration of epibatidine at 120 min-intervals. Tachyphylaxis to releasing effects of CA evoked by epibatidine was observed by the repeated administration. Therefore, in all subsequent experiments, epibatidine was not administered successively more than twice only 120 min-intervals. The epibatidine-induced CA secretion was markedly inhibited by the pretreatment with atropine, chlorisondamine, pirenzepine, nicardipine, TMB-8, and perfusion of $Ca^{2+}-free$ Krebs solution containing EGTA, while was not affected by diphenhydramine. Moreover, the CA secretion evoked by ACh for 1st period $(0{\sim}4\;min)$ was greatly potentiated by the simultaneous perfusion of epibatidine $(1.5{\times}10^{-8}\;M),$ but followed by time-dependently gradual reduction after 2nd period. The CA release evoked by high potassium $(5.6{\times}10^{-8}\;M),$ for 1st period $(0{\sim}4\;min)$ was also enhanced by the simultaneous perfusion of epibatidine, but those after 2nd period were not affected. Taken together, these experimental data suggest that epibatidine causes catecholamine secretion in a calcium dependent fashion from the perfused rat adrenal gland through activation of neuronal cholinergic (nicotinic and muscarinic) receptors located in adrenomedullary chromaffin cells. It also seems that epibatidine-evoked catecholamine release is not relevant to stimulation of histaminergic receptors.

  • PDF

Charateristics of Voltage Dependent Calcium Uptake and Norepinephrine Release in Hypothalamus of DOCA-salt Hypertensive Rats

  • Lee, Jean-Young;Kim, Hae-Jung;Jung, Eun-Young;Chung, Hye-Joo;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.1 no.2
    • /
    • pp.171-176
    • /
    • 1993
  • Purpose of the present study was to clarify the role of noradrenergic neural activities in hypothalamus for either triggering or maintaining hypertension in deoxycorticosterone (DOCA)-salt hypertensive rats. Two groups of animals were prepared: 1) normotensive Wistar rats and 2) DOCA-salt induced hypertensive rats. Voltage dependent $^{45}Ca^{++}$ uptake, endogenous norepinephrine release, and the catecholamine content in the hypothalamus of DOCA-salt hypertensive and normotensive Wistar rats were compared. Animals at 4, 6 and 16 week-old of two groups were sacrificed by decapitation and hypothalamus was dissected out. Voltage dependent calcium uptake and norepinephrine release were determined from hypothalamic synaptosomes either in low potassium or high potassium stimulatory condition by using $^{45}Ca^{++}$ isotope and HPLC-ECD technique. Degrees of voltage dependent $^{45}Ca^{++}$ uptake and norepinephrine release in hypothalamic synaptosomes of 16-week-old DOCA-salt hypertensive rats were significantly greater than those of age matched normotensive control rats. The norepinephrine and dopamine contents of hypothalamus were about the same in two groups of animals. These results suggest that the alteration of evoked norepinephrine release related to calcium uptake in hypothalamus may play a role in the maintenance of hypertension in DOCA-salt hypertensive rats.

  • PDF

Inhibitory Mechanism of Polyphenol Compounds Isolated from Red Wine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Ko, Woo-Seok;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.147-160
    • /
    • 2008
  • The present study was designed to examine effects of polyphenolic compounds isolated from red wine (PCRW) on the release of catecholamines (CA) from the isolated perfused model of the rat adrenal medulla, and to clarify its mechanism of action. PCRW (20${\sim}$180 ${\mu}$g/mL), given into an adrenal vein for 90 min, caused inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}$M) in dose- and time-dependent fashion. PCRW itself did not affect basal CA secretion (data not shown). Following the perfusion of PCRW (60 ${\mu}$g/mL), the secretory responses of CA evoked by Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}$M), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}$M) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}$M) were also markedly blocked, respectively. Interestingly, in the simultaneous presence of PCRW (60 ${\mu}$g/mL) and L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}$M), the inhibitory responses of PCRW on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid were recovered to considerable level of the corresponding control release compared with those effects of PCRW-treatment alone. Practically, the amount of NO released from adrenal medulla after loading of PCRW (180 ${\mu}$g/mL) was significantly increased in comparison to the corresponding basal released level. Collectively, these results obtained here demonstrate that PCRW inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal gland of the normotensive rats. It seems that this inhibitory effect of PCRW is mediated by blocking the influx of both ions through $Na^+$ and $Ca^+{2$} channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are due at least partly to the increased NO production through the activation of nitric oxide synthase. Based on these data, it is also thought that PCRW may be beneficial to prevent or alleviate the cardiovascular diseases, such as hypertension and angina pectoris.

INFLUENCE OF BRADYKININ ON CATECHOLAMINE SECRETION FROM THE ISOLATED PERFUSED RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Kang, Moo-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.128-128
    • /
    • 2003
  • Bradykinin modulates the sympathetic system in various ways. It can stimulate sympathetic neurotransmission directly through presynaptic receptors (Llona et al., 1991) and indirectly via its hypotensive or nociceptive effects which activate central and ganglionic mechanisms (Kuo and Keeton, 1991; Dray et al., 1988). However, it has been found that bradykinin can also liberate prostaglandins in peripheral tissues, thereby attenuating the release of catecholamines(Starke et al., 1977). (omitted)

  • PDF

INFLUENCE OF CILNIDIPINE ON RELEASE OF NOREPINEPHRINE AND EPINEPHRINE EVOKED BY CHOLINERGIC STIMULATION FROM THE RAT ADRENAL MEDULLA

  • Lim, Dong-Yoon;Kim, Ok-Min
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.126.1-126.1
    • /
    • 2003
  • Adrenal medullary chromaffin cells secrete catecholamines in response to nicotinic agonists (Douglas & Rubin. 1961; Wakade, 1981; Amy & Kirshner, 1982). Several types of voltage-dependent Ca2+ channels are present on adrenal chromaffin cells, but the role of each type in the catecholamine secretion process remains controversial. (omitted)

  • PDF

Comparison of conotoxin gvia and cilnidipine on nicotinic receptor stimulation-induced catecholamine release in the rat Adrenal Galnd

  • Lim, Dong-Yoon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.75.2-75.2
    • /
    • 2003
  • The present study was designed to compare the effects of conotoxin GVIA, a selective blocker of N-type voltage-dependent calcium channels (VDCC) and cilnidipine, a blocker of both L- and N-type VDCC, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal gland, and also to establish the mechanism of action. 1. The inhibition of the CA secretory response evoked by acetylcholine (5.32 x 10$\^$-3/ ${\mu}$M) was stronger in cilnidipine-treated glands than in conotoxin GVIA-treated glands. (omitted)

  • PDF

GREEN TEA EXTRACT INHIBITS CATECHOLAMINE RELEASE IN THE PERFUSED RAT ADRENAL GLAND

  • Lim, Dong-Yoom;Shin, Hye-Gyeong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.255.2-255.2
    • /
    • 2002
  • The present study was designed to investigate the effects of green tea extract (GTE) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rat adrenal gland. In the presence of GTE (100 ${\mu}$g/$m\ell$) into an adrenal vein for 60 min. CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM) and Bay-K-8644 (10 ${\mu}$M for 4 min) from the isolated perfused rat adrenal glands were greatly inhibited in a time-dependent fashion. (omitted)

  • PDF

Influence of Cilnidipine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Woo, Seong-Chang;Baek, Young-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.265-272
    • /
    • 2004
  • The present study was attempted to investigate the effect of cilnidipine (FRC-8635), which is a newly synthesised novel dihydropyridine (DHP) type of organic $Ca^{2+}$ channel blockers, on secretion of catecholamines (CA) evoked by acetylcholine (ACh), high $K^+$, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine $(1{\sim}10{\mu}M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M),\;DMPP\;(10^{-4}M\;for\;2\;min)$ and McN-A-343 $(10^{-4}M\;for\;2\;min)$. However, lower dose of cilnidipine did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$, higher dose of it reduced greatly CA secretion of high $K^{+}$. Cilnidipine itself did fail to affect basal catecholamine output. In the presence of cilnidipine $(10{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10{\mu}M)$, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid $(10{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. Moreover, ${\omega}-conotoxin\;GVIA\;(1{\mu}M)$, a selective blocker of the N-type $Ca^{2+}$ channels, given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by Ach, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. Taken together, these results demostrate that cilnidipine inhibits CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland without affecting the basal release. However, at lower dose, cilnidipine did not affect CA release by membrane depolarization while at larger dose inhibited that. It seems likely that this inhibitory effect of cilnidipine is exerted by blocking both L- and N-type voltage-dependent $Ca^{2+}$ channels (VDCCs) on the rat adrenomedullary chromaffin cells, which is relevant to inhibition of both the $Ca^{2+}$ influx into the adrenal chromaffin cells and intracellular $Ca^{2+}$ release from the cytoplasmic store. It is thought that N-type VDCCs may play an important role in regulation of CA release from the rat adrenal medulla.

Influence of Fimasartan (a Novel $AT_1$ Receptor Blocker) on Catecholamine Release in the Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Hyo-Jeong;Lee, Seog-Ki;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.99-109
    • /
    • 2013
  • The aim of this study was to determine whether fimasartan, a newly developed $AT_1$ receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 ${\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), and veratridine (100 ${\mu}M$, an activator of $Na^+$ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 ${\mu}M$) and L-NAME (30 ${\mu}M$, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high $K^+$, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 ${\mu}M$) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 ${\mu}M$). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is relevant to $AT_1$ receptor blockade without NO release.

D-Amphetamine Causes Dual Actions on Catecholamine Release from the Rat Adrenal Medulla

  • Lim, Geon-Han;Na, Gwang-Moon;Min, Seon-Young;Seo, Yoo-Seok;Park, Chan-Won;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • The present study was designed to examine the effect of d-amphetamine on CA release from the isolated perfused model of the rat adrenal gland, and to establish its mechanism of action. Damphetamine $(10{\sim}100{\mu}M$), when perfused into an adrenal vein of the rat adrenal gland for 60 min, enhanced the CA secretory responses evoked by ACh ($5.32{\times}10^{-3}$ M), excess $K^+$ ($5.6{\times}10^{-2}$ M, a membrane depolarizer), DMPP ($10^{-4}$ M, a selective neuronal nicotinic $N_n-receptor$ agonist) and McN-A-343 ($10^{-4}$ M, a selective $M_1-muscarinic$ agonist) only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, d-amphetamine ($30{\mu}M$) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$ ATPase only for the first period (4 min). However, in the presence of high concentration ($500{\mu}M$), d-amphetamine rather inhibited the CA secretory responses evoked by the above all of secretagogues. Collectively, these experimental results suggest that d-amphetamine at low concentrations enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization, but at high concentration it rather inhibits them. It seems that d-amphetamine has dual effects as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that these actions of d-amphetamine are probably relevant to the $Ca^{2+}$ mobilization through the dihydropyridine L-type $Ca^{2+}$ cha$N_n$els located on the rat adrenomedullary chromaffin cell membrane and the release of $Ca^{2+}$ from the cytoplasmic store.