There seems to be some controversy about the effect of total ginseng saponin (TGS) on the secretion of catecholamines (CA) from the adrenal gland. Therefore, the present study aimed to determine whether TGS can affect the CA release in the perfused model of the adrenal medulla isolated from spontaneously hypertensive rats (SHRs). TGS (15-150 ${\mu}g/mL$), perfused into an adrenal vein for 90 min, inhibited the CA secretory responses evoked by acetylcholine (ACh, 5.32 mM) and high $K^+$ (56 mM, a direct membrane depolarizer) in a dose- and time-dependent fashion. TGS (50 ${\mu}g/mL$) also time-dependently inhibited the CA secretion evoked by 1.1-dimethyl-4 -phenyl piperazinium iodide (DMPP; 100 ${\mu}M$, a selective neuronal nicotinic receptor agonist) and McN-A-343 (100 ${\mu}M$, a selective muscarinic M1 receptor agonist). TGS itself did not affect basal CA secretion (data not shown). Also, in the presence of TGS (50 ${\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator (50 ${\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of TGS (50 ${\mu}g/mL$) and N${\omega}$-nitro-L-arginine methyl ester hydrochloride [an inhibitor of nitric oxide (NO) synthase, 30 ${\mu}M$], the inhibitory responses of TGS on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid, and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of TGS-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of TGS (150 ${\mu}g/mL$) was greatly elevated compared to the corresponding basal released level. Taken together, these results demonstrate that TGS inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal medulla of the SHRs. It seems that this inhibitory effect of TGS is mediated by inhibiting both the influx of $Ca^{2+}$ and Na+ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade, without the enhancement effect on the CA release. Based on these effects, it is also thought that there are some species differences in the adrenomedullary CA secretion between the rabbit and SHR.
Thyroid function is mainly regulated through cAMP and phophatidylinositol, and it is well known that TSH-stimulated thyroxine ($T_4$) release is inhibited by catecholamine from mouse thyroids via the ${\alpha}_1$-adrenoceptor stimulation. Previous study has established that the inhibition of $T_4$ release by ${\alpha}_1$-adrenoceptor stimulation results in activated protein kinase C (PKC). The purpose of this study was to determine if ion transport systems are involved in the inhibition of $T_4$ release elicited by ${\alpha}_1$-adrenergic agonist in mouse thyroids. TSH-, IBMX- and cAMP analogue-stimulated $T_4$ release were significantly inhibited by methoxamine, R59022 (diacylglycerol kinase inhibitor), and MDL (adenylate cyclase inhibitor). TSH-stimulated $T_4$ release could be inhibited by Bay K 8644 and cyclopiazoic acid, but not by verapamil and tetrodotoxin. The addition of nifedipine ($Ca^{2+}$ channel blocker), tetrodotoxin and lidocaine ($Na^+$ channel blockers), but not amiloride (EIPA) and ryanodine, completely blocked the inhibitory effects of methoxamine on $T_4$ release. TSH-stimulated $T_4$ release was also inhibited by benzamil ($Na^+-Ca^{2+}$ exchange inhibitor). TSH-, IBMX- and cAMP-stimulated $T_4$ release were inhibited by methoxamine or R59022, these effects were reversed by nifedipine. but not by verapamil. Furthermore, nifedipine reversed the inhibitory effects of benzamil and R59022 on TSH-stimulated $T_4$ release. These data suggest that the observed ${\alpha}_1$-adrenoceptor-mediated inhibition of $T_4$ release in mouse thyroids is the result of an increase in intracellular $Na^+$ or $Ca^{2+}$ effected via activation of fast $Na^+$ or nifedipine-sensitive $Ca^{2+}$ channels, and that $Na^+-Ca^{2+}$ exchange may play an important role in reducing thyroid hormone by increasing intracellular $Ca^{2+}$.
Two modalities of gonadotropin secretion, pulsatile gonadotropin and preovulatory gonadotropin surge, have been identified in the mammals. Pulsatile gonadotropin secretion is modulated by the pulsatile pattern of GnRH release and complex ovarian steroid feedback actions. The neural mechansim that regulates the pulsatile release of GnRH in the hypothalamus is called "GnRH pulse generator". Ovarian steroids, estradiol and progesterone, appear to exert thier feedback effects both directly on the pituitary to modulate gonadotropin release and on a hypothalamic site to modulate GnRH release; estradiol primarily affects the amplitude while progesterone decreases the frequency of the pulsatile GnRH. Steroid hormones are known to affect catecholamine transmission in brain. MBH-POA is richly innervated by NE systems and close apposition of NE terminals and GnRH cell bodies occurs in the MBH as well as in the POA. NE normally facilitates pulsatile LH release by acting through ${\alpha}-receptor$ mechanism. However, precise nature of facilitative role of NE transmission in maintaining pulsatile LH has not been clearly understood. Close apposition of DA and GnRH terminals in ME might permit DA to influence GnRH release. Action of DA transmission probably is mediated by axo-axonic contacts between GnRH and DA fibers in the ME. Dopamine transmission does not normally regulate pulsatile LH release, but under certain conditions, increased DA transmission inhibit LH pulse. Endogenous opioid acts to suppress the secretion of GnRH into hypophysial portal circulation, thereby inhibiting gonadotropin secretion. However, an interaction between endogenenous opioid peptides and gonadotropin release is a complex one which involves ovarian hormones as well. LH secretion appears to be most suppressed by endogenenous opioids during the luteal phase, at a time of elevated progesterone secretion. The arcuate nucleus contains not only cell bodies for GnRH and ${\beta}-endorphin$ but also a dense aborization of fibers suggesting that GnRH release is changed by the interactions between GnRH and ${\beta}-endorphin$ cell bodies within the arcuate nucleus. The frequency and amplitude of pulsatile LH release seem to be increased during the preovulatory gonadotropin surge. Estradiol exerts positive feedback action on the hypothalamo-pituitary axis to trigger preovulatory LH surge. GnRH is also crucial hormonal stimulus for preovulatory LH surge. It is unlikely, however, that increased secretion of GnRH during the preovulatory gonadotropin surge represents an obligatory neural signal for generation of the LH discharge in primates including human. Modulation of preovulatory LH surge by catecholamines has been studied almost exclusively in rats. NE and E may be involved in distinct way to accumulate GnRH in the MBH and its release into the hypophysial portal system during the critical period for LH surge on proestrus in rats. However, the mechanisms whereby augmented adrenergic transmission may facilitate the formation and accumulation of GnRH in the ME-ARC nerve terminals before the LH surge have not been clearly understood.
한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
/
pp.147-147
/
1998
The present study was designed to examine the effect of total ginseng saponin on CA secretion evoked by activation of nicotinic receptors from the isolated perfused rat adrenal glands. Total ginseng saponin given (100 $\mu\textrm{g}$/20 min) into an adrenal vein did fail to produce alteration of spontaneous CA release from the rat adrenal medulla. Acetylcholine (5.32 mM)- and DMPP (100 uM, a selective ncotinic receptor agonist)-evoked CA secretory responses were reduced markedly by the pretreatment with the total ginseng saponin at a rate of 100 $\mu\textrm{g}$/6.2 $m\ell$/20 min, respectively.
This study was attempted to investigate the action of debrisoquine, a sympathetic blocking agent presently employed in treating hypertension, on renal function and to elucidate the mechanism of its action. Debrisoquine, given intravenously, elicited increased urine flow, osmolar and free water clearances, along with marked increases in excretion of both sodium and potassium. Glomerular filtration rate also increased, but renal plasma flow tended to decrease, so that the filtration fraction tended to increase. Rates of reabsorption of sodium and potassium in renal tubules were also significantly diminished. The diuresis induced by debrisoquine was completely blocked by treatment with phentolamine and reserpine, and also markedly inhibited by acute renal denervation. Debrisoquine, when injected directly into a renal artery, produced antidiuretic effect and a reduction in urinary excretion of sodium and potassium, along with diminished renal plasma flow and increased filtration fraction. The above observations indicate that debrisoquine, when given intravenously, induces diuresis in the dog as a result of both diminished tubular reabsorption of electrolytes and of renal hemodynamic changes, which seem to be related to its inhibitory action of catecholamine-release from the sympathetic nerve endings.
Lim and his coworkers (1987; 1988; 1989) have also found that all of total Ginseng saponin, panaxadiol-and panaxatriol-type saponins cause the increased secretion of catecholamines (CA) in a $Ca^{2+}$ -dependent fashion from the isolated perfused rabbit adrenal glands through the activation of cholinergic (both nicotinic and muscarinic) receptors. These CA secretory effects are partly due to the direct action on the rabbit adrenomedullary chromaffin cells. However, the present study was designed to examine the effect of total ginseng saponin on CA secretion evoked by activation of cholinergic nicotinic receptors in the isolated perfused model of the rat adrenal gland. Total ginseng saponin given (100 ${\mu}g$/20 min) into an adrenal vein did fail to produce alteration of spontaneous CA release from the rat adrenal medulla. Acetylcholine(5.32 mM)- and DMPP(100 ${\mu}M$, a selective nicotinic receptor agonist)-evoked CA secretory responses were reduced markedly after the pretreatment with the total ginseng saponin at a rate of 100 ${\mu}g$/6.2 ml/20 min, respectively. Pretreatment with total ginseng saponin also depressed greatly high potassium (56 mM, a membrane depolarizing agent)- and Bay-K-8644 (10 ${\mu}M$, a calcium channel activator)-induced CA secretions. Taken together, it is thought that total ginseng saponin can inhibit the releasing effect of CA evoked by nicotinic receptor stimulation from the isolated perfused rat adrenal medulla, which seems to be associated to the direct inhibition of influx through L-type calcium channel into the rat adrenomedullary chromaffin cells. It seems that there is species differences in the adrenomedullary catecholamine secretion between the rabbit and rat.
리튬(Lithium)은 임상에서 조울병 치료에 이용되고 있다. 본 연구는 흰쥐 적출 관류부신 으로부터 catecholamine (CA) 분비에 대한 리튬의 작용을 검색 하고 그 기전을 규명하고자 하여 얻어진 결과는 다음과 같다. 정상 Krebs-bicarbonate 용액내의 $Na^+$ (118.4 mM)을 리튬으로 대치하여 관류하였을때 CA 분비는 점차적인 증가를 나타내었으며, $30{\sim}60$분에서 최대 분비작용을 나타내었다. Li-Krebs액은 모든 실험에서 부신정맥을 통해서 2시간동안 관류하였다. Li-Krebs에 의한 CA 분비반응은 $Ca^{++}-free$ Krebs액으로 전처치한 상태에서 유의하게 억제되었다. 이와같은 Li-Krebs 액에 의한 CA 분비작용은 nicardipine ($10^{-6}$ M), TMB-8 ($10^{-5}$ M) 및 chlorisondamine ($10^{-6}$ M) 등을 20 분간 각각 전처치 하였을때 현저히 감약되었으나 pirenzepine ($2{\times}10^{-6}$ M)에 의해서는 별다른 영향을 받지 않았다. $Na^+$ pump 억제제인 ouabain ($10^{-4}$ M)으로 20 분간 전처치한 후 Li-Krebs에 의한 CA 유리작용은 뚜렷이 억제되었다. 더우기 tetrodotoxin ($5{\times}10^{-7}$ M)으로 20 분간 전처치 하였을때도 Li-Krebs에 의한 CA 분비반응은 현저히 감약되었다. 이상과 같은 실험결과를 종합하여 보면, 리튬은 흰쥐 부신수질의 크롬 친화성 세포내에 측적됨으로써 칼슘의존성의 CA 분비작용을 일으키며, 이러한 분비작용은 i) 크롬친화성 세포의 탈분극과 이어서 voltage-sensitive 칼슘채널의 개방과 ii) $[Li]_i-[Ca]_0$ counter-transport system의 활성화를 통한 두가지 작용기전에 의해서 매개되는 것으로 생각된다.
최근 일부 연구자에 의해 근막의 자율신경지배가 보고되고 있다. 그러나 근막이완술의 효과에 대한 신경 생리학적 설명과 근거는 없는 실정이다. 이에 본 연구의 목적은 근막이완술에 의해 자율신경계의 흥분이 변화될 수 있는지의 여부를 알아보고자 하였다. 본 연구에서는 건강한 20대 피검자 30명을 15명씩 무작위로 근막이완술군(MG)과 위약대조군(PCG)로 배치하였다. 근막이완술군으로 배정된 피검자들에게는 치료대에 바로 누운 자세에서 두개 기저부 이완기법(cranial base release)을 5분간 적용하였고 위약대조군으로 배정된 피검자들은 같은 자세와 절차를 거치지만 실제 근막이완술을 적용하지 않는 위약 치료를 적용하였다. 근육의 유연성은 경부의 관절가동범위로 측정하였으며 자율신경계의 변화는 심박수, 혈압 그리고 에피네프린과 노르에피네프린의 수치로 측정하였다. 본 연구의 결과는 다음과 같다. 1. 근막이완술군에서 신전과 측방굴곡의 가동범위 변화율이 유의하게 증가하였다. 2. 심박수와 혈압, 그리고 에피네프린의 변화율은 두 군간 유의한 차이가 없었다. 3. 노르에피네프린의 변화율은 두 군간 유의한 차이가 있었다. 본 연구의 결과 근막이완술이 자율신경계의 흥분을 변화 시킬 수 있다는 근거는 없었다.
Adenylate cyclase 효소를 활성화시키는 약물인 Forskolin의 흰쥐 적출관류 부신으로부터 Ach, excess $K^+$, McN-A-343 및 caffein에 의한 catecholamines (CA) 분비작용에 대한 영향을 검색하고, 그 기전을 규명코자 연구를 시행하여 다음과 같은 연구결과를 얻었다. Forskolin (1.0 uM)은 흰쥐 부신적출정맥내로 1분동안 관류시킨 후 Ach(50 ug), excess $K^+$(56 mM), DMPP (100 uM) 및 caffeine (0.3 mM)에 의한 CA 분비작용을 현저히 증강시켰으나 McN-A-343에 의한 CA분비작용에는 영향을 미치지 않았다. Forskolin 자체는 CA분비작용을 일으키지 못하였다. 또한 세포의 calcium을 제거한 상태에서도 위 약물에 의한 CA분비작용에 대하여 유의한 증강작용을 나타내었다. 그러나 McN-A-343의 CA작용에는 영향이 없었으나 위의 약물의 CA분비작용을 유의하게 강화시켰다. Cyclic AMP를 증가시키는 약물로 알려져 있는 dibutyryl cyclic AMP (DBcAMP)는 300 uM농도를 1분간 관류시 Ach, excess $K^+$ 및 DMPP의 CA 분비작용을 뚜렷하게 증강시켰으나 McN-A-343 및 caffeine의 CA분비에는 별다른 영향이 없었다. DBcAMP 자체도 CA분비작용에는 영향을 미치지 못하였으나 또한 DBcAMP는 세포의 칼슘제거시에도 위의 약물에 의한 CA분비작용을 의의있게 증강시켰다. 그렇지만, McN-A-343의 CA분비작용은 증강시키지 못하였다. 이상의 연구결과로 보아 Forskolin는 adenylate cyclase를 활성화 시킴으로써 cyclic AMP 농도를 증가시켜 세포내로 칼슘유입을 증강시키며, 또한 세포내의 칼슘이동에도 관여함으로써 cholinergic nicotinic stimulation 및 depolarization에 의한 CA분비작용을 상승시키는 것으로 사료되어진다.
The aim of the present study was to examine the effect of provinol, which is a mixture of polyphenolic compounds from red wine, on the secretion of catecholamines (CA) from isolated perfused rat adrenal medulla, and to elucidate its mechanism of action. Provinol (0.3 ${\sim}$ 3 ${\mu}g/ml$) perfused into an adrenal vein for 90 min dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_N$ receptor agonist, 100 ${\mu}M$) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100 ${\mu}M$). Provinol itself did not affect basal CA secretion. Also, in the presence of provinol (1 ${\mu}g/ml$), the secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) and veratridine (an activator of voltage-dependent $Na^+$ channels, 10 ${\mu}M$) were significantly reduced. Interestingly, in the simultaneous presence of provinol (1 ${\mu}g/ml$) plus L-NAME (a selective inhibitor of NO synthase, 30 ${\mu}M$), the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid recovered to the considerable extent of the corresponding control secretion in comparison with the inhibition of provinol-treatment alone. Under the same condition, the level of NO released from adrenal medulla after the treatment of provinol (3 ${\mu}g/ml$) was greatly elevated in comparison to its basal release. Taken together, these data demonstrate that provinol inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the perfused rat adrenal medulla. This inhibitory effect of provinol seems to be exerted by inhibiting the influx of both calcium and sodium into the rat adrenal medullary cells along with the blockade of $Ca^{2+}$ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of nitric oxide synthase.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.