• Title/Summary/Keyword: Catechol derivatives

Search Result 28, Processing Time 0.021 seconds

Identification of urinary metabolite(s) of CKD-712 by gas chromatography/mass spectrometry in rats

  • Jeon, Hee-Kyung;Park, Hae-Yeon;Kim, Youn-Jung;Kwon, Oh-Seung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.188-188
    • /
    • 2003
  • Examination was made of the urinary metabolite(s) of CKD-712, which is a chiral compound, named S-YS49 derived from higenamine (one component of Aconite spp.) derivatives. First of all, to analyze the metabolite(s) of CKD-712, a simple and sensitive detection method for CKD-712 was developed by using gas chromatography-mass spectrometry GC/MS). Urine was collected from adult male Sprague-Dawley rats 250${\pm}$10g) in metabolic cage for 24hr after oral administration of 100 mg/kg of CKD-712. The recovery of CKD-712 after extraction and concentration with AD-2 resin column was above 90 % from rat urine. The detection limits of CKD-712 in urine was approximately 0.1 ng/mL. It has well been suggested that isoquinoline possessing catechol moiety such as CKD-712 should be subjected to the catechol-O-methyl kransferase activity in vivo. We detected three major peaks of presumed CKD-712 metabolites in the total ion chromatogram obtained from the rat urine sample after oral administration of CKD-712. From these results, it is assumed that the urinary metabolites are mono-methylation in the naphthyl moiety (metabolite I ), methylation at the C-6 or 7 hydroxy group in the isoquinoline moiety and hydroxylation at in the naphthyl moiety (metaboliteII), and methylation at the C-6 or 7 hydroxy group in the isoquinoline moiety (metaboliteIII).

  • PDF

Extradiol Cleavage of Two-ring Structures of Biphenyl and Indole Oxidation by Biphenyl Dioxygenase in Commamonas Acidovorans

  • On, Hwa-Young;Lee, Na-Ri;Kim, Young-Chang;Kim, Chi-Kyung;Kim, Young-Soo;Park, Yong-Keun;Ka, Jong-Ok;Lee, Ki-Sung;Min, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.264-269
    • /
    • 1998
  • Commamonas acidovorans SMN4 showed wide growth substrate spectra for various aromatic hydrocarbons. Strain SMN4 was able to grow on biphenyl producing a meta-cleavage compound, yellow 2-hydroxy-6-oxophenylhexa-2,4-dienoic acid with a spray of 2,3-dihydroxybiphenyl, while it also grew on catechol, developing yellow 2- hydroxymucoic semialdehyde with a spray of 100 mM catechol. Thus these results indicate that two-ring structures of biphenyl were cleaved by meta-mode in upper and lower pathways. Strain SMN4 metabolized various substituted biphenyl compounds and xylene to the corresponding benzoate derivatives through oxidation of the ring structures. It was clearly shown that biphenyl can be a common inducer in the oxidation of biphenyl and 2,3-dihydroxybiphenyl. Various compounds were examined for their suitability to serve as substrates for indole oxidation, indicating that biphenyl, benzoate, and succinate are quite good inducers of indigo production due to the activity of biphenyl dioxygenase. This results suggest that indigo formation is by means of the combined activities of biphenyl dioxygenase and tryptophanase.

  • PDF

Foliar application of humic acid or a mixture of catechol and vanillic acid enhanced growth and productivity of alfalfa

  • Khaleda, Laila;Kim, Min Gab;Jeon, Jong-Rok;Cha, Joon-Yung;Kim, Woe-Yeon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.248-253
    • /
    • 2017
  • Humic acid (HA) is known to consist of various kinds of polymeric organics, their detailed structures can vary depend on sample sources such as organic manure, composts, peat, and lignite brown coal, and largely exists in grassland soils. HA possesses diverse positive effects that not only increase plant growth but also improve soil fertility. Recently, we have manufactured a co-polymeric product of catechol and vanillic acid (CAVA) synthesized artificially, and found that CAVA as a HA mimic increases seed germination and salt tolerance in Arabidopsis. In this study, we examined whether HA or CAVA affects to seedling growth in alfalfa. Foliar application of HA or CAVA increased alfalfa seedling growth including aerial and in root parts. HA or CAVA dramatically enhanced size of leaf and root, whereas HA significantly displayed higher bioactivity than CAVA. Taken together, CAVA acts like as a HA mimic in alfalfa that could apply as an alternation supplement to enhance plant growth and productivity.

New Unsymmetric Dinuclear Copper(II) Complexes of Trans-disubstituted Cyclam Derivatives: Spectral, Electrochemical, Magnetic, Catalytic, Antimicrobial, DNA Binding and Cleavage Studies

  • Prabu, R.;Vijayaraj, A.;Suresh, R.;Jagadish, L.;Kaviyarasan, V.;Narayanan, V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1669-1678
    • /
    • 2011
  • Six new binuclear copper(II) complexes have been prepared by template condensation of the dialdehydes 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-a) and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-b) with appropriate aliphatic diamines, and copper(II) perchlorate. The structural features of the complexes have been confirmed by elemental analysis, IR, UV-vis and mass spectra etc. The electrochemical behavior of all the copper(II) complexes show two irreversible one electron reduction process. The room temperature magnetic moment studies depict the presence of an antiferromagnetic interaction in the binuclear complexes. The catechol oxidation and hydrolysis of 4-nitrophenylphosphate were carried out by using the complexes as catalyst. The antimicrobial screening data show good results. The binding of the complexes to calf thymus DNA (CT DNA) has been investigated with absorption and emission spectroscopy. The complex [$Cu_2L^{1a}$] displays significant cleavage property of circular plasmid pBR322 DNA in to linear form. Spectral, electrochemical, magnetic and catalytic studies support the distortion of the copper ion geometry that arises as the macrocyclic ring size increases.

Relationship Between Tyrosinase Inhibitory Action and Oxidation-Reduction Potential of Cosmetic Whitening Ingredients and Phenol Derivatives

  • Sakuma, Katsuya;Ogawa, Masayuki;Sugibayashi, Kenji;Yamada, Koh-ichi;Yamamoto, Katsumi
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.335-339
    • /
    • 1999
  • The oxidation-reduction potentials of cosmetic raw materials, showing tyrosinase inhibitory action, and phenolic compounds structurally similar to L-tyrosine were determined by cylcic voltammetry. The voltammograms obtained could be classified ito 4 patterns (patterns 1-4). Patterns 1, characterized by oxidation and reduction peaks as a pair, was observed with catechol, hydroquinone or phenol, and pattern 2 exhibiting another oxidation peak in addition to oxidation and reduction peaks as a pair was found with arbutin, kojic acid, resorcinol, methyl p-hydroxybenzoate and L-tyrosine as the substrate of tyrosinase. Pattern 3 with an independent oxidation peak only was expressed by L-ascorbic acid, and pattern 4 with a reduction peak only at high potentials, by hinokitiol. The tyrosinase inhibitory activity of these compounds was also evaluated using the 50% inhibitory concentration ($IC_{50}$) and the inhibition constant (Ki) as parameters. Hinokitiol, classified as patterns 4, showed the highest inhibitory activity (lowest $IC_{50}$ and Ki). Hydroquinone showing the second highest activity belonged to pattern 1, which also included compounds exhibiting pattern 2 was relatively low with Ki values being in the order of 10-4 M. Although there was no consistent relationship between oxidation-reduction potentials and tyrosinase inhibitory action, the voltammetry data can be used as an additional index to establish the relationship between the structure and the tyrosine inhibitory activity.

  • PDF

Recent progress on polydopamine surface chemistry (폴리도파민 표면화학: 발명 10 년의 이야기)

  • Eom, Soomin;Park, Hong Key;Park, Jihyo;Hong, Seonki;Lee, Haeshin
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2018
  • Polydopamine coating is one of the most straightforward and widely used method for surface modification inspired by adhesiveness of mussel foot protein contributed by co-existence of catechol and amine. This technique has been utilized not only in surface modification but other numerous fields of study as well. For the past decade, the subject of polydopamine has been thoroughly studied since the initial polydopamine research published in 2007, including its chemical structure, coating conditions, and material characteristics. In this study, we report the current trends and progress of polydopamine coating methods, the newly developing areas of polydopamine related research such as using dopamine derivatives and polyphenolic compounds, improvement of various functionalization and application of polydopamine coating, and explain the state of current attempts to discover the chemical mechanism, structure, and properties of polydopamine.

The analysis of the urushiol congeners from the extracts of lacquer trees (옻나무 추출물 중 우루시올 동종체의 함량비 분석)

  • Cho, Yumi;Jung, Yu-Kyung;Kim, Jinsan;Lee, Joonbae;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Active components of lacquer tree referred to as urushiol congeners, which are catechol derivatives with various alkyl or alkenyl substituents. The olefin side chains typically have one, two or three double bonds. In this study, the each congener's ratio analysis of extracts from korean lacquer tree are compared to the one from other asian lacquer tree. Extraction was performed using liquid-liquid extraction (LLE) method with soxhlet system from tree's bark and sap. Extracts were analyzed by reverse phase liquid chromatography and on-line electro spray ionization mass spectrometry (LC-MS/MS).

A Study on the analysis method and composition characteristics of organic materials in the pottery excavated at the palace site in Yongjangseong Fortress, Jindo (진도 용장성 왕궁지 출토 도기호 내부 유기물의 분석법과 성분 특성 연구)

  • YUN Eunyoung;YU Jia;KIM Kyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.158-171
    • /
    • 2023
  • Pottery filled with organic materials was excavated from the G-2 building site of Yongjangseong Fortress, Jingo, a relic of the Goryeo Dynasty. In this study, the characteristics of organic material were confirmed by a scientific analysis of organic material in pottery found at the palace in Yongjangseong, Jindo. In addition, it was intended to review the analysis method to identify the natural resin and to secure characteristic components(biomarkers) for each natural resin and use them as basic data in the future. The organic materials in the pottery were analyzed using attenuated total reflectance Fourier-transformed infrared spectroscopy(ATR-FTIR) and gas chromatography mass spectrometry(GC-MS). The infrared spectral characteristics were estimated to be natural resin, and biomarkers of organic materials were identified as sesquiterpene-based compounds(C15H24, MW 204) and derivatives. The lacquer(T.vemicifluum) is composed mainly of alkenes, alkanes, and catechol. Pine resin(P.densiflora), on the other hand, is primarily composed of diterpenoid(abietic acid, pimaric acid) and Whangchil(yellow lacquer) is identified to have sesquiterpenes(such as selinene, muurolene, calamenene) as its main components. So, the organic material in the pottery can be identified as Whangchil by comparing their compounds with modern resin materials from Dendropanax. morbifera that correspond with the results. Whangchil, which is exuded from the Dendropanax. morbifera, has been used as a natural coating materials since ancient times, and it has been confirmed that the characteristic components are well preserved even 700 years later. It can be assumed that the interior Whangchil was stored not for use as a coating, but rather for ritual purposes when the building was constructed, because the pottery was found near the cornerstone. Furthermore, based on simplified sample preparation using pyrolysis-gas chromatography mass spectrometry(Py-GC-MS), the thermal decomposition products were found to be similar to the characteristic components, suggesting that this method can be applied to the identification of natural resins used in historic artifacts.