• Title/Summary/Keyword: Catechins

Search Result 186, Processing Time 0.027 seconds

Anti-inflammatory Effects of Purpurogallin Carboxylic Acid, An Oxidation Product of Gallic Acid in Fermented Tea (발효차중의 미량 성분인 gallic acid 산화물 purpurogallin carboxylic acid의 항염증 효과)

  • Jhoo, Jin-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.707-711
    • /
    • 2008
  • The principal objective of the current study was to isolate a purpurogallin derivative as an oxidation product from gallic acid, in an effort to assess the anti-inflammatory effects of this compound. Purpurogallin derivative is known to be the one of the oxidation products of gallic acid. This compound has been identified as a minor chemical component in fermented tea products. It has been previously demonstrated that theaflavins, the oxidation products of catechins found in fermented tea products, exert profound antioxidant and anti-inflammatory effects. However, the biological activities of a minor chemical component in fermented teas have yet to be evaluated. Purpurogallin carboxylic acid (PCA) was identified as a major oxidation product of gallic acid from a peroxidase/hydrogen peroxide oxidation model system. The identity of the PCA was verified by $^{1}H$ NMR, $^{13}C$ NMR and MS techniques. PCA treatment significantly suppressed the generation of pro-inflammatory mediators including nitric oxide and IL-6 in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages. According to the nitrite assay, PCA 100, 75, and $50{\mu}g/mL$ treatment dose-dependently inhibited NO production by 57.6, 41.5, and 21.8%, respectively, in LPS-stimulated RAW264.7 murine macrophage cells. Moreover, IL-6 production was inhibited to a significant degree with PCA treatment of 100 and $75{\mu}g/mL$ at 43.1 and 23.9%, respectively. PCA treatment also significantly suppressed $PGE_2$ production at levels of 100 and $75{\mu}g/mL$. These results showed that PCA exerts inhibitory effects on the production of inflammatory mediators.

Physicochemical Properties of Powdered Green Teas in Korea (국내 시판 가루녹차의 이화학적 품질특성)

  • Lee, Lan-Sook;Park, Jong-Dae;Cha, Hwan-Soo;Lee, You-Min;Park, Jae-Woong;Kim, Sang-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • This study was conducted to compare the physicochemical properties of powdered green teas produced in Korea and Japan including particle size, color, chlorophyll, caffeine and theanine. The average particle size of Korean powered green tea ($14.63-25.39\;{\mu}m$) was similar to that of Japanese powdered green tea ($15.46-21.02\;{\mu}m$). The surface color of shade-cultivated Haenam Green Tea (HN-1) had the highest negative 'a' value, which represents 'green' color. When the TCD (total color difference value) was measured in the samples, HN-1 was most similar to the premium powdered green tea of Japan (JA-1). Domestic shade-cultivated powdered green teas had 1.5-2 times greater chlorophyll content than powdered green teas produced from plants that were not cultivated in the shade. The presence of chlorophyll a resulted in a higher intensity of green color than the presence of chlorophyll b. A significant negative correlation was also observed between the color and the chlorophyll a, chlorophyll b and total chlorophyll contents. Specifically, chlorophyll a had the greatest impact on the green color of powdered green tea. The content of catechins, caffeine and theanine in Korean powdered green teas ranged from 14.679-20.128, 1.496-3.237 and 0.926-1.977 g/100 g, respectively. The caffeine and theanine contents were high in shade-cultivated powdered green teas. Based on the above results, domestic powdered green teas cultivated under shaded conditions had a quality similar to that of medium-quality green teas produced in Japan, and the overall quality of Korean powdered green tea was poorer than that of Japanese powdered green tea.

Aqueous Spray-dried Green Tea Extract Regulates Body Weight and Epididymal Fat Accumulation in Mice (열수 녹차추출물이 생쥐의 체중 및 부고환 지방축적 조절에 미치는 영향)

  • Park, Pil-Joon;Kim, Chae-Wook;Cho, Si-Young;Rha, Chan-Su;Seo, Dae-Bang;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.103-108
    • /
    • 2010
  • To obtain the best yield of the beneficial ingredients in green tea, such as catechins, green tea powder is most often prepared by ethyl alcohol extraction. However, the taste, cost and composition of ethyl alcohol extract is different from aqueous spray-dried green tea extract (aq-GTE). Specifically, aq-GTE has a better flavor, lower production costs and higher purity when compared to ethyl alcohol extract. In this study, we elucidated the effect of aq-GTE on diet-induced obesity in male C57BL/6J mice following dose-dependent oral administration of aq-GTE. After eight weeks, the body weight was reduced by 13-17% in mice fed 200 mg/kg bw aq-GTE ($12.468{\pm}0.45\;g$; p<0.05) and 20-25% in mice fed 400 mg/kg bw aq-GTE ($11.259{\pm}0.61\;g$; p<0.05) when compared with the high-fat diet (HFD) control group mice ($14.714{\pm}0.95\;g$; p<0.05). The correlation between epididymal fat accumulation and body weight also decreased by approximately 26.6% (p<0.05) in mice fed a HFD with aq-GTE 400 mg/kg bw. Finally, serum parameters such as the triglyceride, glucose and cholesterol levels in the HFD groups were reduced by the aq-GTE 400 mg/kg bw diet. Analysis on glutamic-pyruvic transaminase, blood urea nitrogen and development of hepatic steatosis revealed no histologic evidence of hepatotoxicity in HFD mice fed aq-GTE. Overall, our results imply that aq-GTE is able to regulate body weight and fat accumulation in mice.

Main constituents and bioactivities of different parts of aronia (Aronia melanocarpa) (아로니아 부위별 주요 성분 정량 및 생리활성 평가)

  • Gim, Sung Woong;Chae, Kyu Seo;Lee, Su Jung;Kim, Ki Deok;Moon, Jae-Hak;Kwon, Ji Wung
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.226-236
    • /
    • 2020
  • This study was designed to evaluate the biological activities and main constituents of different parts (fruit, leaf, and stem) of aronia (Aronia melanocarpa). The total phenolic and flavonoidcontents, DPPH and ABTS+ radical-scavenging activity, reducing power, and ferric reducing/antioxidant power were observed to follow the order of: leaves > stems > fruits, regardless of extraction solvents. The inhibitory activity against lipopolysaccharide-induced NO production in Raw 264.7 cells was significantly higher in the aronialeaf extract-treated group than in the groups treated with stem and fruit extracts. The ultra-performance liquid chromatography (UPLC) analysis was mainly composed of routine. In addition, the highest content level was measured in the case of the catechinmemberepigallocatechin witha higher value than that found in green tea. Theresults of this studyprovide useful information for understanding the chemical constituents and biological activities of aroniafruits and byproducts.

Dependency on p53 in Expression Changes of ATF3 and NAG-1 Induced by EGCG, Genistein, and Resveratrol (EGCG, genistein, resveratrol 처리에 의한 ATF3와 NAG-1 유전자 발현변화의 p53 의존성 분석)

  • Kim, Min-Jeong;Kim, Hyun-Ji;Seo, Yu-Mi;Lee, Eun-Joo;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.615-620
    • /
    • 2018
  • Epigallocatechin-3-gallate (EGCG), one of catechins of green tea, has been known to possess anti-oxidation, anti-inflammation, and anti-cancer effects. The present study analyzed global gene expression changes in EGCG-treated HCT116 cells and p53-null HCT116 cells by oligo DNA microarray analysis. Among the differentially expressed genes in EGCG-treated HCT116 cells, four were selected that are known as tumor suppressor genes (activating transcription factor 3 [ATF3], cyclin dependent kinase inhibitor 1A [CDKN1A], DNA damage-inducible transcript 3 [DDIT3] and non-steroidal anti-inflammatory drug activated gene [NAG-1]) and their expression was compared to the expression of genes in p53-null HCT116 cells. We found that the expression of these genes was not dependent on their p53 status except for NAG-1, which was only up-regulated in HCT116. The results of RT-PCR and Western blot analysis showed that ATF3 up-regulation by EGCG was not affected by the presence of p53, whereas NAG-1 expression was not induced in p53-null HCT116 cells. We also detected ATF3 and NAG-1 expression changes through genistein and resveratrol treatment. Interestingly, genistein could not up-regulate ATF3 regardless of p53 status, but genistein could induce NAG-1 only in HCT116 cells. Resveratrol could significantly induce NAG-1 as well as ATF3 independent of p53 presence. These results indicate that EGCG, genistein and resveratrol may have different anti-cancer effects. Overall, the results of this study may help to increase our understandings of molecular mechanisms on anti-cancer activities mediated by EGCG, genistein and resveratrol in human colorectal cancer cells.

Changes of Chemical Components in Persimmon Leaves during Growth for Processing Persimmon Leaves Tea (감잎차 제조를 위한 감잎의 성장시기별 함유 성분의 변화)

  • Chung, Sun-Hwa;Moon, Kwang-Deok;Kim, Jong-Kuk;Seong, Jong-Hwan;Sohn, Tae-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.141-146
    • /
    • 1994
  • As a foundational study for processing persimmon leaves tea, the physico-chemical characters were investigated in persimmon leaves from Chungdo Bansi, Sagoksi, Kyungsan Bansi and Hiratanenasi during growth. Flesh weights increased rapidly until the middle of May and then decreased slightly. Moisture contents decreased continuously from $79{\sim}81%$ at the beginning of May during growth. Water soluble tannin contents reached $1.55{\sim}2.25%$, maximum values at the middle of May and at the beginning of June, and increased again at the middle of July and then decreased. Contents of catechins, precursor of condensed tannin, indicated $12{\sim}27\;mg%$ at the middle of May and reached $17{\sim}34\;mg%$, maximum values at the middle of June. Contents of catechin were low in order of (+)-catechin, (-)-epicatechin, (-)-epicallocatechingallate, (-)-epigallocatechin and (-)-epicatechingallate. Sugars present in persimmon leaves were composed of sucrose, glucose, fructose, raffinose and mannitol. Sucrose increased continuously, glucose and fructose decreased during growth. Raffinose content was less than 0.1%. Glucose and fructose took more than 90% until the beginning of May, and then sucrose took up $60{\sim}80%$ of total sugar contents. Total vitamin C contents indicated maximum values at the middle of May and at the beginning of June in Chungdo Bansi, Sagoksi and Kyungsan Bansi, maximum vaule at the middle of July in Hiratanenasi. From the basis of these data It was suggested that proper period for picking persimmon leaves prior to processing persimmon leaves tea was from the middle of May to the beginning of June. Since maximum values for most of chemical components occurred at the middle of May and at the beginning of June and persimmon leaves thicken after the middle of June.

  • PDF