Anti-inflammatory Effects of Purpurogallin Carboxylic Acid, An Oxidation Product of Gallic Acid in Fermented Tea

발효차중의 미량 성분인 gallic acid 산화물 purpurogallin carboxylic acid의 항염증 효과

  • Jhoo, Jin-Woo (Department of Animal Products and Food Science, Kangwon National University)
  • 주진우 (강원대학교 동물식품응용과학과)
  • Published : 2008.12.31

Abstract

The principal objective of the current study was to isolate a purpurogallin derivative as an oxidation product from gallic acid, in an effort to assess the anti-inflammatory effects of this compound. Purpurogallin derivative is known to be the one of the oxidation products of gallic acid. This compound has been identified as a minor chemical component in fermented tea products. It has been previously demonstrated that theaflavins, the oxidation products of catechins found in fermented tea products, exert profound antioxidant and anti-inflammatory effects. However, the biological activities of a minor chemical component in fermented teas have yet to be evaluated. Purpurogallin carboxylic acid (PCA) was identified as a major oxidation product of gallic acid from a peroxidase/hydrogen peroxide oxidation model system. The identity of the PCA was verified by $^{1}H$ NMR, $^{13}C$ NMR and MS techniques. PCA treatment significantly suppressed the generation of pro-inflammatory mediators including nitric oxide and IL-6 in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages. According to the nitrite assay, PCA 100, 75, and $50{\mu}g/mL$ treatment dose-dependently inhibited NO production by 57.6, 41.5, and 21.8%, respectively, in LPS-stimulated RAW264.7 murine macrophage cells. Moreover, IL-6 production was inhibited to a significant degree with PCA treatment of 100 and $75{\mu}g/mL$ at 43.1 and 23.9%, respectively. PCA treatment also significantly suppressed $PGE_2$ production at levels of 100 and $75{\mu}g/mL$. These results showed that PCA exerts inhibitory effects on the production of inflammatory mediators.

본 연구의 목적은 발효차 중에 미량물질로 존재하는 purpurogallin 유도체의 항염증에 대한 효과를 검토하고자 실시하였다. 특히 발효차에 존재하는 미량 성분들에 대한 생리활성 연구보고는 많지 않은데 이러한 이유는 미량성분을 기술적으로 발효차로부터 분리 정제하기가 매우 어렵기 때문으로 판단된다. 특히 녹차잎에 존재하는 페놀 화합물중 하나인 gallic acid는 발효과정 중 benzotropolone 구조를 가지는 purpurogallin 유도체를 새롭게 만드는 것으로 알려져 있는데 본 연구에서는 gallic acid 화합물이 이러한 과정 중에 생성하는 산화물을 효소적 산화 모델시스템인 peroxidase/hydrogen peroxide 모델을 이용하여 산화물을 얻은 후 컬럼크로마토그라피법을 이용하여 순수 분리하였다. 이 과정에서 purpurogallin carboxylic acid(PCA)를 gallic acid의 산화물로 분리할 수 있었고 이의 구조를 $^{1}H$ NMR, $^{13}C$ NMR 및 MS 분석방법을 이용하여 확인할 수 있었다. 이후 단리되어진 PCA의 항염증 효과를 검토하였다. RAW264.7 세포를 이용하여 PCA의 항염증 효과를 검토하였는데 PCA 100, 75, $50{\mu}g/mL$ 처리는 NO의 생성을 LPS만 처리한 세포에 비해 각각 57.6, 41.5, 21.8%를 유의적으로 저해시키는 것으로 나타났다. PCA 100, $75{\mu}g/mL$ 처리군에서 LPS만 처리한 RAW264.7 세포에 비해 IL-6의 생성이 각각 43.1, 23.9% 억제되어지는 것으로 관찰되었다. 또한 유사한 경향으로 PCA 100 및 $75{\mu}g/mL$ 처리군에서 LPS만 처리한 RAW264.7 세포에 비해 $PGE_2$의 생성이 각각 29.0% 및 15.4% 억제 되어지는 것으로 관찰되었다. 최근 생리활성을 가지는 신물질의 탐색 및 신소재 개발의 중요성이 부각되고 있다. 특히 선진국의 신물질의 개발에 의한 물질 특허가 증가하고 있고, 이에 따라 국내에서도 국제 경쟁력을 확보하기 위한 새로운 소재 개발이 시급한 상황이다. 본 연구 결과는 gallic acid의 산화물인 purpurogallin 유도체를 이용한 항염증 소재의 적용 가능성을 검토한 주요한 결과로 사료되어진다. 또한 본 연구를 통하여 발효차에 미량으로 존재하는 화합물들의 생리활성을 확인할 수 있었으며, 발효차에 포함되어 있는 미량 성분들의 항염증 관련 신소재 개발 가능성을 검토할 수 있었다.

Keywords

References

  1. Yang CS, Chung JY, Yang GY, Chhabra SK, Lee MJ. Tea and tea polyphenols in cancer prevention. J. Nutr. 130: 472S-478S (2000)
  2. Vinson JA. Black and green tea and heart disease: A review. Biofactors 13: 127-132 (2000) https://doi.org/10.1002/biof.5520130121
  3. Kuroda Y, Hara Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res. 436: 69-97 (1999) https://doi.org/10.1016/S1383-5742(98)00019-2
  4. Katiyar SK, Mukhtar H. Tea antioxidants in cancer chemoprevention. J. Cell. Biochem. 27: 59-67 (1997)
  5. Balentine DA, Wiseman SA, Bouwens LCM. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr. 37: 693-704 (1997) https://doi.org/10.1080/10408399709527797
  6. Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W. ESR study on the structure-antioxidant activity relatiohship of tea catechins and their epimers. Biochim. Biophys. Acta 1427: 13-23 (1999) https://doi.org/10.1016/S0304-4165(98)00168-8
  7. Cao G, Sofic E, Prior RL. Antioxidant capacity of tea and common vegetables. J. Agr. Food Chem. 44: 3426-3431 (1996) https://doi.org/10.1021/jf9602535
  8. Sarkar A, Bhaduri A. Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: Comparison with its individual catechin constituents and green tea. Biochem. Biophys. Res. Commun. 284: 173-178 (2001) https://doi.org/10.1006/bbrc.2001.4944
  9. O'Coinceanainn M, Astill C, Baderschneider B. Coordination of aluminium with purpurogallin and theaflavin digallate. J. Inorg. Biochem. 96: 463-468 (2003) https://doi.org/10.1016/S0162-0134(03)00248-4
  10. Yoshida H, Ishikawa T, Hosoai H, Suzukawa M, Ayaori M, Hisada T, Sawada S, Yonemura A, Higashi K, Ito T, Nakajima K, Yamashita T, Tomiyasu K, Nishiwaki M, Ohsuzu F, Nakamura H. Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein. Biochem. Pharmacol. 58: 1695-1703 (1999) https://doi.org/10.1016/S0006-2952(99)00256-7
  11. Higdon JV, Frei B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43: 89-143 (2003) https://doi.org/10.1080/10408690390826464
  12. Jhoo JW, Sang S, Wei GJ, Lee TC, Rosen RT, Ho CT. Enzymatic synthesis of theaflavins and epitheaflavic acid from tea catechins and their antioxidant activity. J. Food Lipids 11: 89-103 (2004) https://doi.org/10.1111/j.1745-4522.2004.tb00263.x
  13. Jovanovic SV, Hara Y, Steenken S, Simic MG, Antioxidant potential of theaflavins. A pulse radiolysis study. J. Am. Chem. Soc. 119: 5337-5343 (1997) https://doi.org/10.1021/ja970120f
  14. Katiyar S, Mukhtar H. Inhibition of phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate-caused inflammatory responses in SENCAR mouse skin by black tea polyphenols. Carcinogenesis 18: 1911-1916 (1997) https://doi.org/10.1093/carcin/18.10.1911
  15. Lin YL, Tsai SH, Lin-Shiau SY, Ho CT, Lin JK. Theaflavin-3,3'-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-${\kappa}B$ in macrophages. Eur. J. Pharmacol. 367: 379-388 (1999) https://doi.org/10.1016/S0014-2999(98)00953-4
  16. Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen, ZY. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 131: 2248-2251 (2001)
  17. Hong J, Smith TJ, Ho CT, August DA, Yang CS. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem. Pharmacol. 62: 1175-1183 (2001) https://doi.org/10.1016/S0006-2952(01)00767-5
  18. Huang MT, Liu Y, Ramji D, Lo CY, Ghai G, Dushenkov S, Ho CT. Inhibitory effects of black tea theaflavin derivatives on 12-Otetradecanoylphorbol- 13-acetate-induced inflammation and arachidonic acid metabolism in mouse ears. Mol. Nutr. Food Res. 50: 115-122 (2006) https://doi.org/10.1002/mnfr.200500101
  19. Cai F, Li CR, Wu JL, Chen JG, Liu C, Min Q, Yu W, Ouyang CH, Chen JH. Theaflavin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-inflammatory effect and modulation of STAT-1. Mediat. Inflamm. 5: Article ID 30490; 1-9 (2006)
  20. Bailey RG, Nursten HE, McDowell I. The chemical oxidation of catechins and other phenolics: A study of the formation of black tea pigments. J. Sci. Food Agr. 63: 455-464 (1993) https://doi.org/10.1002/jsfa.2740630413