• Title/Summary/Keyword: Catchment Characteristics

Search Result 182, Processing Time 0.025 seconds

A Study on the Analysis of Characteristics of the Catchment Response Time in Midsize Catchment (중규모유역에서의 유역응답시간 특성 분석)

  • Park, Jong Young;Lee, Jung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1042-1046
    • /
    • 2004
  • 본 연구는 국내 실무에서 사용되고 있는 유역응답시간 산정식의 적용성을 검토하기 위하여 기존의 8개의 도달시간 산정식과 6개의 지체시간 산정식을 유역면적이 $50\~500km^2$인 중규모유역에 적용하였으며, 실측수문 자료로부터 두가지 정의에 의해 산정한 도달시간과 지체시간을 비교, 검토하였다. 기존의 도달시간 산정식에 의한 도달시간은 실측 도달시간에 비해 모든 대상유역에서 과소한 값을 나타내었으며, 지체시간 산정식의 경우 Clark 공식과 SCS 공식은 모든 대상유역에서 과소한 값을 나타내었고 Snyder 공식, Linsley 공식, Eagleson 공식, Rao와 Delleur 공식은 대상유역에 따라 과다 또는 과소한 경향을 나타내었다. 따라서 실측수문자료에서 산정된 유역응답시간과 기존의 산정식에서 결정된 값들이 상이하게 나타나 중규모유역에서 기존의 유역응답 시간 산정식의 적용성이 떨어진다고 판단되었다. 대상유역에서 적합한 유역응답시간 공식을 유도하기 위하여 유역응답시간과 유역특성인자간의 회귀분석을 실시하였으며, 국내 중규모유역에서 적용할 수 있는 도달시간과 지체시간 산정식을 제안하였다.

  • PDF

Calculation of pollutant loadings discharged from domestic systems (분뇨 처리형태에 따른 축산계 오염부하량 산정(지역환경 \circled1))

  • 엄명철;공동수;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.500-506
    • /
    • 2000
  • Discharge characteristics of pollutant loadings from domestic systems were estimated in the catchment of a reclaimed area, Saemankeum. Pollutant loadings was estimated according to the discharge pattern of small treatment facilities. Recycled-fertilizer system was dominant in this area.

  • PDF

Study on Runoff Characteristics of Nonpoint Sources during Rainfall in Anyangchun Watershed (안양천 유역의 강우시 비점오염원에 따른 유출부하특성에 관한 연구)

  • Hwang, Byung-Gi;Yu, Se-Jin;Cha, Young-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.223-234
    • /
    • 2001
  • In this study, we conducted a survey to examine the runoff characteristics of nonpoint sources, which wash off pollutants from the surface of basin during rainfall and affect water pollution of streams. An Anyangchun basin in the region Ewiwang City was selected as a study site. The basin divided into several subbasins such as Wanggokchun, Ojeonchun, and Anyangchun based on the tributaries, which confluence to the main stream of Anyangchun. Four times of field examination had been carried out between July and August of 2000, and water quality data collected from the surveys had been analysed. The survey includes in-situ flow, DO and PH measurements in the outlet of catchment. Laboratory analysis includes BOD, TN, TP. From the result, pollutant by runoff of nonpoint sources were washed out along with stormwater in the beginning of rainfall, and flowed into streams resulted in stream pollution. In case of BOD, the load from Ojeonchun catchment, most of which included urban areas, took up 50% of the total load from the entire watershed. Thus, by the results, it is clear that runoff load by urban nonpoint sources plays an important role in the control and management of nonpoint sources for the watershed.

  • PDF

A Runoff Characteristics Analysis for the Design of Interior Drainage Systems at Urbanization Catchment in the Cheju Volcanic Island (제주도 화산도서에서 도시화유역 내수처리시스템 설계를 위한 유출특성분석)

  • 김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.39-51
    • /
    • 1999
  • This study has an object to evaluate runoff characteristics with ILLUDAS model and SWMM owing to each rainfall distribution type of Huff's quartile and each rainfall duration time of 30 ,60, 120 and 180 minutes. As a result of this study, Type-Ⅰ Extreme (TIE) rainfall distribution pattern with Huff's 2nd quartile is adequate for Cheju volcanic island . To decide optimal rain fall duration , time of concentration and critical duration should be compared and analyzed each other. In this study, 30 and 120 miniutes were suggeste to iptiaml duration time of A and B study basins. It is concluded that the magnitude of peak runoff discharge is maximum with Huff's 4th quartile, and that of total runoff volume is maximum with Huff's 4th quartile for ILLUDAS model and with Huff's 1st quartile for SWMM. As rainfall duration time increasing is increasing . Also in case of total runoff volume, volumen by SWMM is less than by ILLUDAS model as to variation ratio of total runoff volume in A and B study basin. Therefore, the resulots of this study canb e sued as basic data in determining adequate rainfoal duration time and rainfall distribution type and used for urban drainage systems analysis and design at small urbanization catchment is Cheju volcanic island.

  • PDF

Size Determination Method of Bio-Retention Cells for Mimicking Natural Flow Duration Curves (자연상태 유황곡선 보전을 위한 생태저류지 용량결정방법)

  • Lee, Okjeong;Jang, Suhyung;Kim, Hongtae;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.424-431
    • /
    • 2016
  • LID facilities like bio-retention cells is applied to manage stormwater. LID concept becomes an important part in stormwater management, and the clear understanding of hydrologic performance and hydrologic impact on the corresponding catchment has been needed. In this study, the application of flow duration curves as design strategy is investigated. Bio-retention cells like many LID facilities are installed to reproduce natural hydrologic processes. In this study, the attempt to determine the size of a bio-retention cell is carried out to satisfy the flow duration criteria. From the results, it is shown that "5 mm * the area of a target catchment" which is the current facility design capacity is valid for the drainage area with 20-30% impervious rate. In the 100% impervious catchment where LID facilities are typically installed, the design capacity to intercept stormwater of approximately 47 mm depth is required to reproduce natural flow duration curves. This means that about 11% of the target catchment area should be allocated as a bio-retention cell. However, the criteria of the design capacity and facility surface area should be set at the possible implementation conditions in reality, and site-specific hydrologic characteristics of a target catchment should be considered.

First flush modeling of the radial type surface runoff and a placement strategy for stormwater inlets to improve the effectiveness of the first flush treatment in a small impervious catchment (방사형 강우 유출의 초기세척 모의 및 소규모 불투수 배수구역에서의 초기우수 처리효과 상승을 위한 집수시설 배치 방안)

  • Kang, Joo-Hyon;Lee, Dong Hoon;Kim, Jin Hwi
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.375-382
    • /
    • 2017
  • In this study, general characteristics of dynamic behavior of stormwater runoff from a small impervious catchment was investigated from a series of simulations for a radial type surface runoff. Based on the simulation results, a better placement strategy for stormwater inlets to improve performance of a structural best management practice (BMP) was suggested. The degree of pollutant first flush from an ideal radial type impervious catchment was simulated using a 1-D diffusion wave equation coupled with a pollutant transport equation. The results showed that the first flush of the chemical oxygen demand was the strongest when the catchment length ranged 30-50m at a bed slope of 0.02. This result suggested that a required degree of the first flush can be intentionally obtained by just changing the locations and numbers of stormwater inlets, and thereby adjusting the catchment length. Particularly, the overall performance of a structural BMP in reducing pollutant load can be improved by placing the stormwater inlets at locations for obtaining a required first flush strength.

Accounting for zero flows in probabilistic distributed hydrological modeling for ephemeral catchment (무유출의 고려를 통한 간헐하천 유역에 확률기반의 격자형 수문모형의 구축)

  • Lee, DongGi;Ahn, Kuk-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.437-450
    • /
    • 2020
  • This study presents a probabilistic distributed hydrological model for Ephemeral catchment, where zero flow often occurs due to the influence of distinct climate characteristics in South Korea. The gridded hydrological model is developed by combining the Sacramento Soil Moisture Accounting Model (SAC-SMA) runoff model with a routing model. In addition, an error model is employed to represent a probabilistic hydrologic model. To be specific, the hydrologic model is coupled with a censoring error model to properly represent the features of ephemeral catchments. The performance of the censoring error model is evaluated by comparing it with the Gaussian error model, which has been utilized in a probabilistic model. We first address the necessity to consider ephemeral catchments through a review of the extensive research conducted over the recent decade. Then, the Yongdam Dam catchment is selected for our study area to confirm the usefulness of the hydrologic model developed in this study. Our results indicate that the use of the censored error model provides more reliable results, although the two models considered in this study perform reliable results. In addition, the Gaussian model delivers many negative flow values, suggesting that it occasionally offers unrealistic estimations in hydrologic modeling. In an in-depth analysis, we find that the efficiency of the censored error model may increase as the frequency of zero flow increases. Finally, we discuss the importance of utilizing the censored error model when the hydrologic model is applied for ephemeral catchments in South Korea.

Evaluation of Supply Adequacy of Park Service in Suwon-si by Urban Park Catchment Area Analysis (도시공원 이용권 분석을 통한 수원시 공원서비스의 적정성 평가)

  • Kim, Hyun;Kim, Yea Sung;Lee, Da-Som;Kim, Jee-Yeop
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.2
    • /
    • pp.114-124
    • /
    • 2015
  • In the city, the urban park contributes to the quality of citizen life in many ways, and the importance of the urban park as an urban planning facility is growing each day. In this study, evaluation of park service supply adequacy in Suwon-si, the difference in analysis methods, and the type of land use at urban park catchment area analysis were analyzed. As a result, there were remarkable differences between the two analysis methods. In Suwon-si, the catchment area by network analysis was only about 41% of catchment area by buffer analysis. However, when basic local authorities establish planning of parks and green areas, they use buffer analysis to calculate the park service area. It means that such calculations of urban park service areas may be wider than actually used. Also, because there were differences between urban park catchment areas by land use types, guidelines of planning parks and green areas will be adjusted. Although quantitative expansion of the park area is also important for the realization of green welfare, it is necessary to consider city characteristics such as the population size, population density, land use types, and so on.

Analysis of runoff reduction performance of permeable pavement and rain barrel in Mokgam stream basin and determination of installation priorities (목감천 유역 내 투수성포장과 빗물저류조의 유출량 저감 성능 분석 및 설치 우선 순위 결정)

  • Chae, Seung-Tak;Chung, Eun-Sung;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.905-918
    • /
    • 2023
  • This study aimed to assess runoff reduction performance and determine installation priorities for Permeable Pavement (PP) and Rain Barrel (RB) within the Mokgam Stream basin. Optimal design parameters were determined to maximize the effectiveness of PP and RB in reducing runoff. Furthermore, the optimal parameters were incorporated to compare the runoff reduction performance of PP and RB. Analysis of the runoff curve at the basin outlet indicated that PP demonstrated superior performance in reducing runoff during the rising limb of the curve. At the same time, RB excelled within the falling limb. Comparisons of total runoff and peak runoff reduction by sub-catchment revealed that in larger sub-catchment areas, PP outperformed RB in runoff reduction. In contrast, RB exhibited higher performance in areas with a higher impervious ratio. Based on the evaluation of runoff reduction performance for PP and RB, installation priorities were determined within the Mokgam Stream basin. The results showed that PP and RB installations were prioritized for sub-catchments with larger areas and a higher impervious ratio. Furthermore, the correlation between the ranking of runoff reduction performance and sub-catchment characteristics showed a high correlation with both the impervious area ratio and sub-catchment geometrical properties in sub-watersheds exhibiting the top 25% runoff reduction performance. These results emphasize that when determining the priority for installing LID facilities in developed urban areas, it is necessary to consider not only the impervious area ratio but also the geometrical properties of the sub-catchment.

Structure and Physical Properties of Earth Crust Material in the Middle of Korean Peninsula(4) : Development Status of Groundwater and Geological Characteristics in Chungnam Province (한반도 중부권 지각물질의 구조와 물성연구(4) : 충남도 지하수 개발 현황과 지질특성)

  • 송무영;신은선
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.153-168
    • /
    • 1994
  • The status of groundwater development in Chungnam was studied with geological characteristics according to the measured data of Korean Rural Development Corporation. The data of 212 survey wells were used for the relation between catchment area and water discharge, and the data of 344 development wells for the relationships between well depth and discharge, between casing depth and discharge, between rock type and discharge, and the relation with lineaments density. The relationship between the catchment area and discharge does not show any special trend, and it is understood that groundwater of hard rock mass is not so much influenced by the surface catchment area. The relationship between well depth and discharge shows two different trends; discharge increasing with depth for alluvial groundwater, but no certain trend between depth and discharge for groundwater of hard rock zone. Discharge increases linearly with the casing depth, and it is reliable because the casing was installed in the weathered zone against well destruction. Generally the rock type does not show any difference of discharge, but the crystalline rocks such as granite and gneiss yield a little more discharge than the more porous rocks such as sedimentary rock or schist. It suggests that the effect of fracture zone is a major governing factor. In Hongsong and Puyo, there are similar in rock type and casing depth, but the big difference in average discharge. The big discharge of Hongsong is concordant with the higher intersection density and longer length of lineament in Hongsong than those of Puyo. Therefore the groundwater development strategy should be focused on the micro topography analysis and geophysical survey for the understanding of the fracture zone rather than catchment area or rock type.

  • PDF