• Title/Summary/Keyword: Catchment

Search Result 701, Processing Time 0.023 seconds

도시소유역의 유출해석을 위한 수문모형의 개발과 응용 - Development and Applications of Hydrologic Model of Strom Sewer runoff at Small Urban Area

  • 이영대;박승우
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.329-340
    • /
    • 1990
  • The Paper presents the development and applications of physically-based urban runoff analysis model, URAM, which is capable of simulating sewer runoff hydrograhps and inundation conditions within a samll urban catchment. The model coniders three typical flow conditions of urban drainage networks, which are over-land flow, gutter flow, and conduit flow during a storm. Infiltration, retention storage and flow routing procedures are physically depicted in model. It was tested satisfactorily with the field data from a tested catchment having drainage area of 0.049k$m^2$. It was also applied to other urban areas and found to adequately simulate inundation areas and duration as observed during storms. The test results as well as model components are described in the paper.

  • PDF

Modeling the Relationship between Land Cover and River Water Quality in the Yamaguchi Prefecture of Japan

  • Amiri, Bahman Jabbarian;Nakane, Kaneyuki
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.343-352
    • /
    • 2006
  • This study investigated the relationship between land cover and the water quality variables in the rivers, which are located in the Yamaguchi prefecture of West Japan. The study area included 12 catchments covering $5,809\;Km^2$. pH, dissolved oxygen, suspended solid, E. coli, total nitrogen and total phosphorus were considered as river water quality variables. Satellite data was applied to generate land cover map. For linking alterations in land cover (at whole catchment and buffer zone levels) and the river water quality variables, multiple regression modeling was applied. The results indicated that non-spatial attribute (%) of land cover types (at whole catchment level) consistently explained high amounts of variation in biological oxygen demand (72%), suspended solid (72%) and total nitrogen (87%). At buffer zone-scale, multiple regression models that were developed to represent the linkage between the alterations of land cover and the river water quality variables could also explain high level of total variations in suspended solid (86%) and total nitrogen (91%).

A Study on the Hydrologic Design of Detention Storage Ponds in Urbanized Area

  • Lee, Jung-Sik;Lee, Jae-Joon;Kim, Kyu-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.21-35
    • /
    • 1996
  • This Study is to develop the suitable hydrologic models for determination of the size and location of detention storage facilities to restrain stormwater runoff in urban areas. Hypothetical areas of two levels are considered to seize the hydrologic response characteristics. A one-square-kilometer ares is selected for the catchment level, and a 10-square-kilometer area consisting of 10 catchments is adapted at the watershed level as representative of urban drainage area. In this analysis, different rainfall freqyencies, land uses, drainage patte군, basin shates and detention storage policies are considered. Folw reduction effect of detention storage facilities is deduced from storage ratio and detention basin factor. A substantial saving in detention storage volumes is achieved 노두 the detention storage is planned at the watershed level rather than the catchment level. For the application of real watersheds, two watersheds in Seoul metropolitan area-Jamshil 2 and Seongnae 1-are selected on the basis of hydrologic response charactaristics. Through the regression analysis between dimensionless deterntion storage volume, dimensionless upstream area ratio and reduction rate of storage ratio, the regression equations to determine the size and location of detention storage faclities are presented.

  • PDF

Runoff Analysis due to the Moving Storm (이동강우에 의한 유출영향분석)

  • Han, Kun-Yeun;Jeon, Min-Woo;Choi, Kyu-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.823-836
    • /
    • 2004
  • Using the simple geometry for the idealized catchment consisting of two plane surfaces and a stream between them, runoff was analysed for the moving storms based on the kinematic wave equation. The storm velocity applied in this study was 0.25∼2.0 m/s moving up, down and cross direction of catchment. Applied rainfall distribution types are uniform, advanced, delayed, intermediate type. The results indicate that the moving storms of cross direction generate the largest peak runoff, and the smallest runoff appears in the case of up stream direction. The sensitivity of runoff to rainfall distribution types decreases as storm velocity increases. It is clear that faster storm velocity generates faster peak time and becomes thin hydrographs rapidly.

Streamflow sensitivity to land cover changes: Akaki River, Ethiopia

  • Mitiku, Dereje Birhanu;Kim, Hyeon Jun;Jang, Cheol Hee;Park, Sanghyun;Choi, Shin Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.49-49
    • /
    • 2016
  • The impact of land cover changes on streamflow of the Akaki catchment will be assessed using Soil and Water Assessment Tool (SWAT) model. The study will analyze the historical land cover changes (1993 to 2016) that have taken place in the catchment and its effect on the streamflow of the study area. Arc GIS will be used to analysis the satellite images obtained from the United States Geological Survey (USGS). To investigate the impact of land cover change on streamflow the model set up will be done using readily available spatial and temporal data, and calibrated against measured discharge. Two third of the data will be used for model calibration (1993?2000) and the remaining one-third for model validation (2001?2004). Model performance will be evaluated by using Nash and Sutcliff efficiency (NS) and coefficient of determination (R2). The calibrated model will be used to assess two land cover change (2002 and 2016) scenarios and its likely impacts of land use changes on the runoff will be quantified. The evaluation of the model response to these changes on streamflow will be presented properly. The study will contribute a lot to understand land use and land cover change on streamflow. This enhances the ability of stakeholder to implement sound policies to minimize undesirable future impacts and management alternatives which have a significant role in future flood control of the study area.

  • PDF

Impact of Vegetation Heterogeneity on Rainfall Excess in FLO-2D Model : Yongdam Catchment (용담댐 유역에서 식생 이질성이 FLO-2D 유량 산정에 미치는 영향)

  • Song, Hojun;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.259-266
    • /
    • 2019
  • Two main sources of data, meteorological data and land surface characteristics, are essential to effectively run a distributed rainfall-runoff model. The specification and averaging of the land surface characteristics in a suitable way is crucial to obtaining accurate runoff output. Recent advances in remote sensing techniques are often being used to derive better representations of these land surface characteristics. Due to the mismatch in scale between digital land cover maps and numerical grid sizes, issues related to upscaling or downscaling occur regularly. A specific method is typically selected to average and represent the land surface characteristics. This paper examines the amount of flooding by applying the FLO-2D routing model, where vegetation heterogeneity is manipulated using the Manning's roughness coefficient. Three different upscaling methods, arithmetic, dominant, and aggregation, were tested. To investigate further, the rainfall-runoff model with FLO-2D was facilitated in Yongdam catchment and heavy rainfall events during wet season were selected. The results show aggregation method provides better results, in terms of the amount of peak flow and the relative time taken to achieve it. These rwsults suggest that the aggregation method, which is a reasonably realistic description of area-averaged vegetation nature and characteristics, is more likely to occur in reality.

Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface (지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정)

  • Choi, Daegyu;Kim, Jin Kwan;Lee, Jae Kwan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.

A Study on Competition Analysis in Retail Distribution Industry Using GIS in Seoul

  • YOO, Byong-Kook;KIM, Soon-Hong
    • Journal of Distribution Science
    • /
    • v.19 no.3
    • /
    • pp.49-60
    • /
    • 2021
  • Purpose: This study aims to utilize geographic data to analyze how various retail formats of large-scale stores around the traditional market affect the performance of the traditional market in Seoul, Korea. Research design, data, and methodology: The two types of catchment areas were demarcated (circle of 1km radius and Thiessen polygon) for each traditional market, and the large-scale stores located within each catchment area were identified for 153 traditional markets in Seoul, Korea. Additionally, multiple regression analysis was utilized. Results: The results revealed that the influence on the performance of the traditional markets were different depending on the retail format of the large-scale stores. Large discount stores were found to have a negative effect on the sales and the visitors of traditional markets, whereas complex shopping malls and department stores had a positive effect on the traditional markets. Conclusions: As a result of the differences in the retail format such as product categories and leisure functions, the impact of some large-scale stores on the traditional market may have a greater agglomeration effect than the consumer churn effect. Therefore, it is suggested that in the regulation of these large-scale stores, the differences in retail format should be considered for the future.

Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Thi, Linh Dinh;Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.183-183
    • /
    • 2020
  • Accurate quantitative precipitation estimation plays an important role in hydrological modelling and prediction. Instantaneous quantitative precipitation estimation (QPE) by utilizing the weather radar data is a great applicability for operational hydrology in a catchment. Previously, regression technique performed between reflectivity (Z) and rain intensity (R) is used commonly to obtain radar QPEs. A novel, recent approaching method which might be applied in hydrological area for QPE is Long Short-Term Memory (LSTM) Networks. LSTM networks is a development and evolution of Recurrent Neuron Networks (RNNs) method that overcomes the limited memory capacity of RNNs and allows learning of long-term input-output dependencies. The advantages of LSTM compare to RNN technique is proven by previous works. In this study, LSTM networks is used to estimate the quantitative precipitation from weather radar for an urban catchment in South Korea. Radar information and rain-gauge data are used to evaluate and verify the estimation. The estimation results figure out that LSTM approaching method shows the accuracy and outperformance compared to Z-R relationship method. This study gives us the high potential of LSTM and its applications in urban hydrology.

  • PDF

Improving the Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: V. Field Validation of the Sky-condition based Lapse Rate Estimation Scheme (기상청 동네예보의 영농활용도 증진을 위한 방안: V. 하늘상태 기반 기온감률 추정기법의 실용성 평가)

  • Kim, Soo-ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2016
  • The aim of this study was to confirm the improvement of efficiency for temperature estimation at 0600 and 1500 LST by using a simple method for estimating temperature lapse rate modulated by the amount of clouds in comparison with the case adopting the existing single temperature lapse rate ($-6.5^{\circ}C/km$ or $-9^{\circ}C/km$). A catchment of the 'Hadong Watermark2,' which includes Hadong, Gurye, and Gwangyang was selected as the area for evaluating the practicality of the temperature lapse rate estimation method. The weather data of 0600 and 1500 LST at 12 weather observation sites within the catchment were collected during the entire year of 2015. Also, the 'sky condition' of digital forecast products of KMA in 2015 ($5{\times}5km$ lattice resolution) were overlapped with the catchment of the 'Hadong Watermark2,' to calculate the spatial average value within the catchment, which were used to simulate the 0600 and 1500 LST temperature lapse rate of the catchment. The estimation errors of the temperatures at 0600 LST were ME $-0.39^{\circ}C$ and RMSE $1.45^{\circ}C$ in 2015, when applying the existing temperature lapse rate. Using the estimated temperature lapse rate, they were improved to ME $-0.19^{\circ}C$ and RMSE $1.32^{\circ}C$. At 1500 LST, the effect of the improvements found from the comparison between the existing temperature lapse rate and the estimated temperature lapse rate were minute, because the estimated lapse rate of clear days is not very different from the existing lapse rate. However, the estimation errors of the temperatures at 1500 LST during cloudy days were improved from ME $-0.69^{\circ}C$, RMSE $1.54^{\circ}C$ to ME $-0.51^{\circ}C$, RMSE $1.19^{\circ}C$.