Browse > Article
http://dx.doi.org/10.5532/KJAFM.2016.18.3.135

Improving the Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: V. Field Validation of the Sky-condition based Lapse Rate Estimation Scheme  

Kim, Soo-ock (National Center for Agro-Meteorology, Seoul National University)
Yun, Jin I. (College of Life Sciences, Kyung Hee University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.18, no.3, 2016 , pp. 135-142 More about this Journal
Abstract
The aim of this study was to confirm the improvement of efficiency for temperature estimation at 0600 and 1500 LST by using a simple method for estimating temperature lapse rate modulated by the amount of clouds in comparison with the case adopting the existing single temperature lapse rate ($-6.5^{\circ}C/km$ or $-9^{\circ}C/km$). A catchment of the 'Hadong Watermark2,' which includes Hadong, Gurye, and Gwangyang was selected as the area for evaluating the practicality of the temperature lapse rate estimation method. The weather data of 0600 and 1500 LST at 12 weather observation sites within the catchment were collected during the entire year of 2015. Also, the 'sky condition' of digital forecast products of KMA in 2015 ($5{\times}5km$ lattice resolution) were overlapped with the catchment of the 'Hadong Watermark2,' to calculate the spatial average value within the catchment, which were used to simulate the 0600 and 1500 LST temperature lapse rate of the catchment. The estimation errors of the temperatures at 0600 LST were ME $-0.39^{\circ}C$ and RMSE $1.45^{\circ}C$ in 2015, when applying the existing temperature lapse rate. Using the estimated temperature lapse rate, they were improved to ME $-0.19^{\circ}C$ and RMSE $1.32^{\circ}C$. At 1500 LST, the effect of the improvements found from the comparison between the existing temperature lapse rate and the estimated temperature lapse rate were minute, because the estimated lapse rate of clear days is not very different from the existing lapse rate. However, the estimation errors of the temperatures at 1500 LST during cloudy days were improved from ME $-0.69^{\circ}C$, RMSE $1.54^{\circ}C$ to ME $-0.51^{\circ}C$, RMSE $1.19^{\circ}C$.
Keywords
Lapse rate; Temperature estimation; Complex terrain; Sky condition;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Chung, U., H. H. Seo, K. H. Hwang, B. S. Hwang, J. Choi, J. T. Lee, and J. I. Yun, 2006: Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology 137(1-2), 15-24.   DOI
2 Geiger, R., R. H. Aron, P. Todhunter, 2009: The climate near the ground (7th ed.). Rowman & Littlefield Publishers, 642pp.
3 Kim, S. O., and J. I. Yun, 2011: A quantification method for the cold pool effect on nocturnal temperature in a closed catchment. Korean Journal of Agricultural and Forest Meteorology 13(4), 176-184. (In Korean with English abstract) doi: 10.5532/KJAFM.2011.13.4.176   DOI
4 Kim S. O., and D. J. Kim, J. H. Kim, and J. I. Yun, 2013: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: I. Correction for local temperature under the inversion condition. Korean Journal of Agricultural and Forest Meteorology 15(2), 76-84. (In Korean with English abstract) doi: 10.5532/KJAFM.2013.15.2.076   DOI
5 Kim S. O., and J. I. Yun, 2014: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: III. Correction for advection effect on determination of daily maximum temperature over sloped surfaces. Korean Journal of Agricultural and Forest Meteorology 16(4), 297-303. (In Korean with English abstract) doi: 10.5532/KJAFM.2014.16.4.297   DOI
6 Kim S. O., and J. I. Yun, 2015: Improving the usage of the Korea Meteorological Administration's digital forecasts in agriculture: IV. Estimation of daily sunshine duration and solar radiation based on 'Sky Condition' product. Korean Journal of Agricultural and Forest Meteorology 17(4), 281-289. (In Korean with English abstract) doi: 10.5532/KJAFM.2015.17.4.281   DOI
7 Kim S. O., and J. I. Yun, 2016: Feasibility of the lapse rate prediction at an hourly time interval. Korean Journal of Agricultural and Forest Meteorology 18(1), 55-63. (In Korean with English abstract) doi: 10.5532/KJAFM.2016.18.1.55   DOI
8 Minder, J. R., P. W. Mote, and J. D. Lundquist, 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. Journal of Geophysical Research 115(D14122), 1-13. doi: 10.1029/2009JD013493   DOI
9 Kirchner, M., T. Faus-Kessler, G. Jakobi, M. Leuchner, L. Ries, H. E. Scheel, and P. Suppan, 2013: Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. International Journal of Climatology 33(3), 539-555. doi: 10.1002/joc.3444   DOI
10 Lutgens, F. K., and E. J. Tarbuck, 2007: The atmosphere (tenth ed.). Pearson Education, Inc., 520pp.
11 Yun, J. I., J. Y. Choi, and J. H. Ahn, 2001: Seasonal trend of elevation effect on daily air temperature in Korea. Korean Journal of Agricultural and Forest Meteorology 3(2), 96-104. (In Korean with English abstract)
12 Yun, J. I., 2015: A feasibility study of a field-specific weather service for small-scale farms in a topographically complex watershed. Korean Journal of Agricultural and Forest Meteorology 17(4), 317-325. (In Korean with English abstract) doi: 10.5532/KJAFM.2015.17.4.317   DOI
13 Yun, J. I., S. O. Kim, J. H. Kim, and D. J. Kim, 2013: User-specific agrometeorological service to local farming community: A case study. Korean Journal of Agricultural and Forest Meteorology 15(4), 320-331. (In Korean with English abstract) doi: 10.5532/KJAFM.2013.15.4.320   DOI