• Title/Summary/Keyword: Catch per unit effort

Search Result 69, Processing Time 0.04 seconds

A State-space Production Assessment Model with a Joint Prior Based on Population Resilience: Illustration with the Common Squid Todarodes pacificus Stock (자원복원력 개념을 적용한 사전확률분포 및 상태공간 잉여생산 평가모델: 살오징어(Todarodes pacificus) 개체군 자원평가)

  • Gim, Jinwoo;Hyun, Saang-Yoon;Yoon, Sang Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.2
    • /
    • pp.183-188
    • /
    • 2022
  • It is a difficult task to estimate parameters in even a simple stock assessment model such as a surplus production model, using only data about temporal catch-per-unit-effort (CPUE) (or survey index) and fishery yields. Such difficulty is exacerbated when time-varying parameters are treated as random effects (aka state variables). To overcome the difficulty, previous studies incorporated somewhat subjective assumptions (e.g., B1=K) or informative priors of parameters. A key is how to build an objective joint prior of parameters, reducing subjectivity. Given the limited data on temporal CPUEs and fishery yields from 1999-2020 for common squid Todarodes pacificus, we built a joint prior of only two parameters, intrinsic growth rate (r) and carrying capacity (K), based on the resilience level of the population (Froese et al., 2017), and used a Bayesian state-space production assessment model. We used template model builder (TMB), a R package for implementing the assessment model, and estimating all parameters in the model. The predicted annual biomass was in the range of 0.76×106 to 4.06×106 MT, the estimated MSY was 0.13×106 MT, the estimated r was 0.24, and the estimated K was 2.10×106 MT.

DNA barcoding for fish species identification and diversity assessment in the Mae Tam reservoir, Thailand

  • Dutrudi Panprommin;Kanyanat Soontornprasit;Siriluck Tuncharoen;Santiwat Pithakpol;Korntip Kannika;Konlawad Wongta
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.9
    • /
    • pp.548-557
    • /
    • 2023
  • The purposes of this research were to identify fish species using DNA barcodes or partial sequences of cytochrome b (Cytb) and to assess the diversity of fish in the Mae Tam reservoir, Phayao province, Thailand. Fish samples were collected 3 times, during the winter, summer, and rainy seasons, from 2 sampling sites using gillnets with 3 mesh sizes (30, 50, and 70 mm). A total of 34 representative samples were classified into 12 species, 7 families and 6 orders by morphological- and DNA barcoding-based identifications. However, one cichlid species, Cichlasoma trimaculatum, could only be identified using DNA barcoding. Family Cyprinidae had the greatest diversity, 50.00%. The diversity, richness and evenness indices ranged from 0.43-0.65, 0.64-1.46, and 0.27-0.40, respectively, indicating that fish diversity at both sampling sites was relatively low. A comparison of the catch per unit effort (CPUE) with 3 different mesh sizes found that the 50 mm mesh size was the best (474.80 ± 171.56 g/100 m2/night), followed by the 70 mm (417.41 ± 176.24 g/100 m2/night) and 30 mm mesh sizes (327.88 ± 115.60 g/100 m2/night). These results indicate that DNA barcoding is a powerful tool for species identification. Our data can be used for planning the sustainable management of fisheries resources in the Mae Tam reservoir.

Distribution and Migration of Flying Squid, Ommastrephes bartrami (LeSueur), in the North Pacific (북태평양에 있어서 빨강오징어 Ommastrephes bartrami (LeSueur)의 분포 및 회유)

  • GONG Yeong;KIM Yeong Seung;KIM Soon Song
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.166-179
    • /
    • 1985
  • The seasonal distribution and migration of flying squid, Ommastrephes bartrami (LeSueur), in the North Pacific were studied by means of mantle length, surface temperature, and catch and effort data of the Korean drift gillnet fishery from 1980 to 1983. The water temperature for the best fishing ranged from $15^{\circ}\;to\;16^{\circ}C$ in May through July and from $13^{\circ}\;to\;18^{\circ}C$ in August through January. High densities of flying squid were found in the thermal fronts with $18^{\circ}C$ isotherm in August and with $15^{\circ}C$ isotherm in September. The densities of flying squid were higher in the western region than in the eastern region in the North Pacific. The high densities of flying squid in the northwestern Pacific were attributed to the high gradients of oceanographic properties in the region. Migration models for flying squid were hypothesized based on the monthly distributions of catch per unit net, mantle length compositions by statistical blocks, and the hydrographic features of the North Pacific. The large flying squid moved to the northern region and to the central Pacific region earlier than the small sized group in the northward migration period (from June to August). Flying squid begin the reverse southward migration from the Subarctic Frontal Zone in autumn with onset of cooling and the development of Oyashio Current. The large sized group starts their southward return migration from more northern waters than the small sized group but the former moves past the later ana reaches the spawing ground first.

  • PDF

Spatial-Temporal Distribution Characteristics of Bigeye and Yellowfin Tunas in Kiribati Waters

  • Taanga, Aketa Mature;Cai, Yi-Hui;Lu, Hsueh-Jung;Ni, I-Hsun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.174-179
    • /
    • 2006
  • Information on the distribution characteristics of tuna resources in Kiribati EEZ waters in three zones (Zone 1: west Gilbert region, Zone 2: central Phoenix region, and Zone 3: east Line region) as well as their relationship with the ocean environment is critical for sustainable managing the migratory tuna resource and fishing practices in this region. Therefore, this study is designed to investigate the spatial and temporal distribution and concentration of bigeye (BET) and yellowfin tuna (YFT) in Kiribati EEZ waters in relation to sea surface temperature (SST) and thermocline depth so as to better understand the tuna resources management basis in Kiribati waters. The geographic and temporal distribution and concentration were first displayed. Paired t-test was utilized to compare the distribution between the two tuna species based on Catch per Unit Effort (CPUE) derived from the Korean longliners during 1996 to 2004, and also among the three zones of Kiribati EEZ waters. Environmental conditions of the three zones were then compared and correlated with the CPUE of YFT and BET. In addition, the effect of ENSO phenomena on the environmental conditions and the distribution of YFT and BET within the three zones were also examined. The BET was relatively higher in the Zone 3 whereas YFT predominate in the Zone 1 and the Zone 2 due to oceanographic differences among the three zones and the ecological habitats of the two tuna species. It was suggested that El Ni?o/Southern Oscillation (ENSO) phenomena altered the oceanographic conditions of the three zones that in turn change the distribution of the two tuna species. During El Ni?o, the warm phase of ENSO, resulted in having more BET in all the three zones and the opposite observed during La Ni?a (cold phase) replacing by having relatively higher catch rate for YFT, particularly in the Zone 2. Although the results of the study are from short periods (1996 to 2004) in considering oceanographic anomality, these environmental variations should be considered into sustainable fisheries management of tuna fisheries in Kiribati EEZ waters.

  • PDF

Seasonal Dynamics of Fish Fauna and Compositions in the Gap Stream Along With Conventional Water Quality

  • Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.503-510
    • /
    • 2007
  • The purposes of the study were to analyze the seasonal effects on the fish fauna and compositions including trophic guilds and tolerance guilds. For the study, we collected fish samples twice in June as premonsoon period and early September 2007 as monsoon periods in five sampling sites of the Gap Stream, and then biological oxygen demand (BOD), nutrients (TN, TP) and suspended solids (SS) were compared with the guild data along the gradient of upstream-to-downstream. Chemical water quality, based on BOD, TP, and TN degraded gradually from the upstream to downstream reach and there were about 3 fold difference between S1 and S5. Water quality was worse in the premonsoon than the monsoon, and the heavy monsoon resulted in a dilution of the polluted river by rain water, especially, in the downstream reach. Total number of fish species, based on the catch per unit effort (CPUE), showed a distinct difference between the two seasons; 30 species were sampled in premonsoon, but 23 species were sampled in the monsoon, indicating a seasonal difference in the fish fauna. Tolerant species dominated the fish community (48.3%) in the stream, and the proportions prior to physical disturbance by the monsoon rain were evidently greater in the downstream reach than the upstream. This reflected the characteristics of urban stream polluted by nutrient enrichment as shown in the BOD and TP values. Sensitive species in the premonsoon decreased from the gradient of upstream-to-downstream reach. Such seasonal modifications in the trophic and tolerance guilds were evident. In the analysis of trophic guild and habitat guild, during the premonsoon the proportion of insectivore and riffle-benthic species were largely greater in the upstream reach than the downstream, whereas the proportions were opposite along the gradient of the stream in monsoon. Thus, the patterns of chemical water quality along the longitudinal gradients reflected the premonsoon conditions of insectivores and tolerant species, indicating that summer monsoon data of fish may not match with water quality due to large physical disturbance by flow regime. Seasonal monsoon in this region as well as the chemical pollution may act as a key role influencing the fish compositions of trophic and tolerance guilds and fauna. The data collected during the premonsoon rather than the monsoon, thus, may be better predictor for a diagnosis of stream health conditions.

Characteristics of Fish Compositions and Longitudinal Distribution in Yeongsan River Watershed (영산강 수계의 어류 종 조성 및 분포특성 분석)

  • Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.301-310
    • /
    • 2008
  • This study was to analyze characteristics of fish compositions and longitudinal distribution, based on trophic and tolerance guild at 22 sampling sites of Yeongsan River watershed during 2003$\sim$2006, and also to compare before and after the estuary dam construction. The collected fishes, based on catch per unit effort (CPUE), were 44 species in the watershed and dominant fishes were Zacco platypus, Acheilognathus macropeterus, Zacco temminckii and Carassius auratus. According to comparative analysis of fish in the non polluted sites (NPS) vs. polluted sites (PS), the number of species and individuals was lower by 70% in the PS than the NPS, indicating ecological degradations by chemical pollutions or/and habitat modifications. The relative abundance of sensitive and insectivore species decreased as the stream order increases, while tolerant and omnivore species increased with the stream order. In this survey, largemouth bass (Micropterus salmoides), which is a top-carnivore and exotic species, may influence trophic guild system throughout active predations on endemic species, resulting in modifications of ecological functions. The construction of estuary dam on Yeongsan River in 1981 resulted in wider lacustrine zone and desalinated through limitation of seawater input. These physical changes have caused increases of lentic dwelling species and limited fish migrations (i.e., eel). Overall, fish fauna and composition analyses showed that the number of species and individuals in this water body may be reduced due to inputs of pollutants from the watershed, habitat modifications, and increases of exotic species (largemouth bass). For these reasons, effective lake management strategies are required for the ecosystem conservation.

Study on the Horizontal Distribution of Squid Gill-Net Fishing Ground in the North Pacific Ocean (북태평양 오징어유자망어장의 수평분포에 관한 연구)

  • Lee, Sung-Hee;Lee, Byoung-Gee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.3
    • /
    • pp.221-229
    • /
    • 1990
  • The horizontal distribution of squid gill-net fishing ground in the North Pacific Ocean was examined within the main fishing season, May to October, during 1986~1989. Data of sea surface temperature were selected from Technical Reports of National Fisheries Research Development Agency of Korea, Data Records of Hokkaido University, Deep-sea Training Reports of Korea Fishing Training centre, Fishing Operation Reports of Daelim Fisheries Co., Ltd., Oyang Fisheries Co., Ltd. and Dong-won Industrial Co., Ltd.. Data of catch were also collected from Deep-sea Training Reports of Korea Fishing Training Centre and Fishing Operation Report of three fisheries companies in Korea. The fishing ground was segmented in every 1 degree of latitude from $34^{\circ}N$ to $46^{\circ}N$ and 2 degree of longitude from $144^{\circ}E$ to $162^{\circ}W.$ The distribution and centeroid of fishing ground, fished and optimum surface temperature, catch per unit effort (CPUE) in the fishing ground were computed, based on the above data. The resulted obtained can be summarized as follows: 1. Range of fishing ground can be estimated as $35^{\circ}~40^{\circ}N,$ $178^{\circ}~166^{\circ}W$ in May, $36^{\circ}~41^{\circ}N,$ $178^{\circ}E~166^{\circ}W$ in June, $38^{\circ}~44^{\circ}N,$ $170^{\circ}E~170^{\circ}W$ in July, $39^{\circ}~44^{\circ}N,$ $144^{\circ}~180^{\circ}E$ in August, $39^{\circ}~44^{\circ}N,$ $144^{\circ}~170^{\circ}E$ in September and $40^{\circ}~44^{\circ}N,$ $144^{\circ}~154^{\circ}E$ in October. 2. Fishing ground in May, June and October is similarly distributed along longitude and latitude, but the range of the former is larger than that of the latter in July, August and September. Monthly centeroids of fishing sectors is estimated as #3888 in May, #3884 in June, #4078 in July, #4154 in August, #4146 in September and #4044 in October respectively. 3. Fished temperature and optimum and temperature are estimated as $14.0~18.5^{\circ}C$ and $15.0~16.0^{\circ}C$ in May, $13.5~18.5^{\circ}C$ and $14.5~16.0^{\circ}C$ in June, $14.0~20.0^{\circ}C$ and $14.5^{\circ}C,$ $19.0^{\circ}C$ in July, $16.0~21.5^{\circ}C$ and $18.0~20.0^{\circ}C$ in August, $14.5~22.0^{\circ}C$ and $17.0~18.5^{\circ}C$ in September, $14.0~18.0^{\circ}C$ and $16.0~17.0^{\circ}C$ in October. 4. Monthly mean CPUE which corresponds to the net weight of catch(kg) divided by the sheet number of operated gillnets is calcuted as 3.2, 4.5, 4.3, 5.1, 6.4 and 5.8 kg/sheet respectively. 5. Considering the monitoring program of the squid gill-net fishery in the North Pacific Ocean during 1989~1990, set by the Korean Government, 12 sectors may be restricted out of 21 fishing sectors in May, 7 out of 24 in June, 4 out of 25 in July. They are free from restriction hereafter August.

  • PDF

The Fluctuations of Catches in Set Nets Around Kyeongbuk Province (강북연안 정치망 어획량 변동에 관한 연구)

  • Hong, Jeong-Pyo;Lee, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.153-165
    • /
    • 1995
  • The fluctuations of catches in set nets around Kyeongbuk Province, the eastern coast of Korea, were analyzed and investigated by on the values of CPUE(Catch Per Unit Effort per hauling), and composition of dominant species caught from 1985 to 1989. Annual CPUE values were fluctuated every year, but their trends were decreased year by year, When the values were evaluated by species, the trends of annual catches were shown decreasing in file fish(Auteridae), mackerel(Scomber japonicus), tuna(Thunnus Thynnus), rock fish(Sebastes schlegelid) and yellowtail(Seriola quinqueradiata), increasing in sardine(Sardinops melanosticta), jack mackerel(Trachurus japonicus), and herring(Clupea pallasi), and similar in squid(Todarodes pacificus) and cuttle fish(Sepiidae). The main fishing season evaluated by monthly CPUE was estimated from August to November with a little difference by regions : from August to November at Chukpyon and Kanggu, from September to November at Chuksan and Kampo, and August to December in Hupo. When the DPUE values were analyzed by species, the main fishing seasons were quite different by species. Mackerel, jack mackerel, tuna, yellowtail, and rock fish were caught mainly from September to October, file fish and squid from November to January, sardine from April to May, herring in May, and cuttle fish in April. Annual catches were shown highest level in file fish and revealed higher by sardine, jack mackerel, mackerel, squid, tuna, and yellowtail in order. But the highest catches among each species were different with seasons, and that from January to July was sardine, from November to December file fish. The main migrating seasons of file fish, mackerel, squid, tuna, and cuttle fish at Chukpyon were a little earlier than at other regions. Though the migrating seasons of jack mackerel and tuna were almost same in every regions, that of sardine were shown 3 month's difference according to regions. In the year when the warm currents were stronger than those of the normal year and their isotherms were formed from the north to south along the eastern coastal line, the annual fish catches in set net were show higher levels.

  • PDF

A Study on the Hull-dimension of 89 ton class Stow-net Vessel with Stern-fishing (89톤급 선미식 안강망어선의 선형치수에 관한 연구)

  • Park, Je-Ung;Lee, Hyeon-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.159-165
    • /
    • 1997
  • This paper presents the optimum dimension of 89 ton class stow-net vessel with stern-fishing. The model of basic design is developed by using the optimization techniques referring to objective function and numerous constraints as follows; speed, fishing quantity, fishing days, catch per unit effort(CPUE), and weight/ratio of main dimensions, etc. Thus, the basic design of stow-net fishing vessel is built up by using the optimization of the design variables called the economic optimization criteria, and the objective function represents the criterion which is cost benefit ratio(CBR). The main conclusions are as follows. 1. S/W for decision of optimum hull size is developed in 89 ton class stow-net fishing vessel which is constructed with optimization of the design variables called the economic optimization criteria. 2. For optimum ship dimensions in 89 ton class stow-net fishing vessel, the hull dimensions can be obtained in the range of L= 27.3m, B = 6.6m, D = 2.80m, Cb = 0.695, T/D = 0.80, $\Delta$(displacement)=281.7ton with 10 knots.

  • PDF