• Title/Summary/Keyword: Catastrophic disaster

Search Result 46, Processing Time 0.023 seconds

A Comparison on the Identification of Landslide Hazard using Geomorphological Characteristics (지형특성을 활용한 산사태 위험도 판단을 위한 비교)

  • Cha, Areum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.67-73
    • /
    • 2014
  • Landslide disasters including debris flows are the one of the most frequent natural disasters in Korea, and losses of lives and property damages due to these catastrophic events have been increased every year. Various mitigation programs and related policies have been conducted in order to respond and prepare landslide disasters. Most landslide reduction programs are, however, focused on recovery actions after the disasters and lead to unrealistic consequences to the affected people and their properties. The main objective of this study, therefore, is to evaluate the landslide hazard based on the identification of geomorphological features, which is for the preparedness of the landslide disasters. Two methodologies, SINMAP and vector dispersion analyses are used to simulate those characteristics where landslides are actually located. Results showed that both methods well discriminate geomorphic features between stable and unstable domains. This proves that geomorphological characteristics well describe a relationship with the existing landslide hazard. SINMAP analysis which is based on the consecutive model considering external factors like infiltration is well identify the landslide hazard especially for debris flow type landslides rather than vector dispersion focusing on a specific area. Combining with other methods focusing specific characteristics of geomorphological feature, accurate landslide hazard assessments are implemented.

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.

Seismic Performance Evaluation of Multi-Story Piping Systems using Triple Friction Pendulum Bearing (지진격리장치를 적용한 복층구조파이핑 시스템의 내진성능평가)

  • Ryu, Yonghee;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • Purpose: The evaluation of seismic performance of critical structures has been emerging a key issue in Korea, since a magnitude 5.8 earthquake, the worst in Koran history, struck Gyeongju, southern area in Korea on september 12th, 2016. In particular, the catastrophic failure of nonstructural components such as sprinkler piping systems can cause significant economic loss or loss of life during and after an earthquake. The nonstructural components can be more fragile than structural components in seismic behavior. Method: This study presents the seismic performance evaluation of fire protection piping system, using coupled building-piping system installed with Triple Friction Pendulum Bearings (TPBs). Kobe (Japan), Kocaeli (Turkey), and GyeongJu (Korea) were selected to consider the uncertainty of ground motions in this study. Result: In the simulation results, it was observed that the reduction of maximum displacements of the piping system with the TPBs' system was significant: Kobe, Kocaeli, and Gyeongju cases were 49%, 14.4% and 21.5%, respectively. Conclusion: Therefore, using seismically isolated system in a building-piping system can be more effective to reduce the seismic risk than a normally installed building-piping systems without TPBs in strong earthquakes.

Stochastic finite element based seismic analysis of framed structures with open-storey

  • Manjuprasad, M.;Gopalakrishnan, S.;Rao, K. Balaji
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.381-394
    • /
    • 2003
  • While constructing multistorey buildings with reinforced concrete framed structures it is a common practice to provide parking space for vehicles at the ground floor level. This floor will generally consist of open frames without any infilled walls and is called an open-storey. From a post disaster damage survey carried out, it was noticed that during the January 26, 2001 Bhuj (Gujarat, India) earthquake, a large number of reinforced concrete framed buildings with open-storey at ground floor level, suffered extensive damage and in some cases catastrophic collapse. This has brought into sharp focus the need to carry out systematic studies on the seismic vulnerability of such buildings. Determination of vulnerability requires realistic structural response estimations taking into account the stochasticity in the loading and the system parameters. The stochastic finite element method can be effectively used to model the random fields while carrying out such studies. This paper presents the details of stochastic finite element analysis of a five-storey three-bay reinforced concrete framed structure with open-storey subjected to standard seismic excitation. In the present study, only the stochasticity in the system parameters is considered. The stochastic finite element method used for carrying out the analysis is based on perturbation technique. Each random field representing the stochastic geometry/material property is discretised into correlated random variables using spatial averaging technique. The uncertainties in geometry and material properties are modelled using the first two moments of the corresponding parameters. In evaluating the stochastic response, the cross-sectional area and Young' modulus are considered as independent random fields. To study the influence of correlation length of random fields, different correlation lengths are considered for random field discretisation. The spatial expectations and covariances for displacement response at any time instant are obtained as the output. The effect of open-storey is modelled by suitably considering the stiffness of infilled walls in the upper storey using cross bracing. In order to account for changes in soil conditions during strong motion earthquakes, both fixed and hinged supports are considered. The results of the stochastic finite element based seismic analysis of reinforced concrete framed structures reported in this paper demonstrate the importance of considering the effect of open-storey with appropriate support conditions to estimate the realistic response of buildings subjected to earthquakes.

Characteristics of Sea Surface Temperature Variation during the High Impact Weather over the Korean Peninsula (한반도에서 위험기상 발생 시 나타나는 해수면온도 변동의 특성)

  • Jung, Eunsil
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.240-258
    • /
    • 2019
  • Typhoons, torrential rainfall, and heavy snowfall cause catastrophic losses each year in the Republic of Korea. Therefore, if we can know the possibility of this phenomenon in advance through regular observations, it will be greatly beneficial to Korean society. Korea is surrounded by sea on its three sides, and the sea surface temperature (SST) directly or indirectly affects the development of typhoons, heavy rainfall, and heavy snowfall. Therefore, the characteristics of SST variability related to the high impact weather are investigated in this paper. The heavy rainfall in Korea was distributed around Seoul, Gyeonggi, and west and southern coast. The heavy snowfall occurred mainly in the eastern coastal (hereafter Youngdong Heavy Snow) and the southwestern region (hereafter Honam-type heavy snow). The SST variability was slightly different depending on the type and major occurrence regions of the high impact weather. When the torrential rain occurred, the SST variability was significantly increased in the regions extending to Jindo-Jeju island-Ieodo-Shanghai in China. When the heavy snow occurred, the SST variability has reduced in the southern sea of Jeju island, regardless of the type of heavy snowfall, whereas the SST variability has increased in the East Sea near $130^{\circ}E$ and $39^{\circ}N$. Areas with high SST variability are anticipated to be used as a basis for studying the atmospheric-oceanic interaction mechanism as well as for determining the background atmospheric aerosol observation area.

The Improvement Measures for the Establishment of Emergency Management System in Private Security (위험사회의 전개에 따른 민간경비 산업의 대응과제 - 위기관리를 중심으로)

  • Park, Dong-Kyun
    • Korean Security Journal
    • /
    • no.10
    • /
    • pp.103-125
    • /
    • 2005
  • Hazard are defined here as threat to life, well-being, material goods and environmental from the extremes of natural processes or technology. The challenges of natural and technology in increasing the exposure of people and property to risk pose a dilemma for any government seeking the fullest protection for its people and their property. As society progresses and as technology improves and becomes ever more intricate and far reaching, the human species is confronted with increasingly diverse and numerous catastrophic events. Not so infrequently, unfortunately, the impact of either a man-made or natural disaster is compounded by the fact that policy makers have neither prepared themselves or the public to respond appropriately to a disaster once the tragedy has struck. Many concerns have been raised for importance of emergency management after 1990's numerous urban disasters in Korea. Emergency management is the discipline and profession of applying science, technology, planning, and management to deal with extreme events that can injure or kill large numbers of people, cause extensive damage to property, and disrupt community life. When the primary function of private security is to protect lives and property of clients, emergency management should be included in the security service and many countermeasures should be carried out for that purpose. The purpose of this study is to establish ways and means needed to improve the private security emergency management system in Korea. This study is spilt into four chapters. Chapter I is the introduction part. Chapter II introduces the reader to a private security and emergency management theory, and Chapter III deals with the establishment of an effective emergency management system in Korea private security, Chapter IV is a conclusion. Policy makers and private security industry employers in Korea has not concerned with the importance of training and education by lack of recognition and has been passive about qualified guards. And the authorities supervising and the administrating the guards has not recognized the importance of private security and has neglected the training of the guards. In theses contexts, private security should develop and maintain a educational program of emergency management to meet their responsibilities to provide the protection and safety of the clients. Today's modern corporate security director, is, first of all, a competent, well-rounded business executive and, second, a 'service expert'. And, emergency management personnel in private security industry need continuous training.

  • PDF