• 제목/요약/키워드: Catalytic wave

검색결과 20건 처리시간 0.021초

경유차 매연저감장치에 의해 비활성화된 DOC촉매의 재제조 효과에 관한 연구 (A Study on the Effectiveness of Remanufacturing Technology for the Diesel Oxidation Catalyst(DOC) Deactivated by Diesel Exhaust Gas)

  • 박해경
    • 청정기술
    • /
    • 제16권4호
    • /
    • pp.265-271
    • /
    • 2010
  • 경유차 매연저감장치에서 비활성화된 디젤산화촉매(DOC)를 대상으로 여러 가지 조건에서 재제조한 후, 재제조된 DOC의 일산화탄소(CO)와 탄화수소화합물(THC)의 저감효율과 촉매물성 특성을 분석하여 비활성화된 DOC 촉매에 대한 재제조 효과를 관찰하였다. 재제조된 DOC촉매에 대한 오염물질 저감성능 평가는 디젤엔진 다이나모 장치를 이용, 배기가스를 일부 우회시켜 온도와 공간속도조절이 가능한 촉매반응장치로 수행하였으며, 촉매물성 분석은 광학현미경, EDX, ICP, TGA 그리고 porosimeter를 이용하였다. 연구수행 결과 비활성화된 DOC 촉매를 본 연구에서 적용된 고온배소세정, 산성/염기성용액에 의한 초음파세정, 세정 후 촉매활성성분 재함침에 의한 재제조를 수행할 경우, 재제조된 DOC 촉매의 성능이 신품 성능의 90% 이상으로 회복되는 것을 확인하였으며, 광학현미경, EDX, TGA와 ICP등의 분석을 통해 본 연구조건에서의 재제조 과정으로, 촉매의 활성 저하 원인이 되었던 각종 불순 성분 대부분이 비활성화된 DOC 촉매로부터 제거되는 것을 확인하였다.

크롬-쿠페론 착물의 흡착 촉매파 (Adsorptive Catalytic Wave of Chromium-Cupferron Complex)

  • 권영순;서소진;이상미
    • 분석과학
    • /
    • 제15권3호
    • /
    • pp.214-220
    • /
    • 2002
  • 크롬-쿠페론착물의 표면 축적과 촉매 특성을 순환 전압전류법으로 조사하였다. 정 방향으로 주사할 때에 -1.45 V에서 환원 봉우리가 생기고 역 주사할 때에 -1.39 V에서 반전된 봉우리가 생기는데 이는 촉매과정을 나타낸다. 이 반전 봉우리의 최적 실험 조건은 $1{\times}10^{-4}M$ 쿠페론이 포함된 붕산염 완충용액(pH 9.48), 축적전위 -1.8 V, 주사속도 20 mV/s이었다. 이 조건에서 주 봉우리를 이용하여(축적시간 1분) 얻은 크롬의 검출한계는 $3.2{\times}10^{-10}M$이다.

폐삼원촉매의 재제조에 관한 연구 (A Study on the Remanufacturing of the Waste Three-way Catalysts)

  • 허빈;박해경;이철호
    • 청정기술
    • /
    • 제15권3호
    • /
    • pp.147-153
    • /
    • 2009
  • 폐삼원촉매를 초음파세척 후 활성성분을 재함침하여 촉매를 재제조 하였으며 여러가지 조건에서 재제조한 촉매의 활성과 표면특성을 분석하였다. 초음파세척을 통해 재제조한 경우, 폐촉매 표면의 오염물질을 제거하는 데에 필요한 최적시간은 약 5분임을 알 수 있었다. 활성성분의 적절한 재함침량에 대하여 검토하였으며 탄화수소화합물(THC), 일산화탄소(CO), 및 질소산화물(NOx)의 전환활성을 확인하기 위하여 다양한 온도범위에서 촉매의 성능실험을 수행하였다. 실험결과로부터 NOx 전환활성을 제외한 THC 및 CO의 전환환성은 신촉매의 전환활성과 거의 같은 수준까지 회복되는 것을 알 수 있었다.

Adsorption of Macrocyclic Cobalt Complex on a Glassy Carbon Electrode for the Electrocatalytic Reduction of $O_2$

  • 강찬
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권7호
    • /
    • pp.754-760
    • /
    • 1998
  • It was found that the adsorption of a cobalt(III) complex with a macrocyclic ligand, C-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (hmc), was induced on a glassy carbon electrode by heavily oxidizing the electrode surface. Adsorption properties are discussed. The glassy carbon electrode with the adsorbed complex was employed to see the catalytic activities for the electro-reduction of O2. In the presence of oxygen, reduction of (hmc)Co3+ showed two cathodic waves in cyclic voltammetry. Compared to the edge plane graphite electrode at which two cathodic waves were also observed in a previous study, catalytic reduction of O2 occurred in the potential region of the first wave while it happened in the second wave region with the other electrode. A rotating disk electrode after the same treatment was employed to study the mechanism of the O2 reduction and two-electron reduction of O2 was observed. The difference from the previous results was explained by the different reactivity of the (hmc)CoOOH2+ intermediate, which is produced after the two electron reduction of (hmc)Co3+ in the presence of O2.

Effects of chemistry in Mars entry and Earth re-entry

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • 제5권5호
    • /
    • pp.581-594
    • /
    • 2018
  • This paper is the follow-on of a previous paper by the author where it was pointed out that the forthcoming, manned exploration missions to Mars, by means of complex geometry spacecraft, involve the study of phenomena like shock wave-boundary layer interaction and shock wave-shock wave interaction also along the entry path in Mars atmosphere. The present paper focuses the chemical effects both in the shock layer and on the surface of a test body along the Mars orbital entry and compares these effects with those along the Earth orbital re-entry. As well known, the Mars atmosphere is almost made up of Carbon dioxide whose dissociation energy is even lower than that of Oxygen. Therefore, although the Mars entry is less energized than the Earth re-entry, one can expect that the effects of chemistry on aerodynamic quantities, both in the shock layer and on a test body surface, are different from those along the Earth re-entry. The study has been carried out computationally by means of a direct simulation Monte Carlo code, simulating the nose of an aero-space-plane and using, as free stream parameters, those along the Mars entry and Earth re-entry trajectories in the altitude interval 60-90 km. At each altitude, three chemical conditions have been considered: 1) gas non reactive and non-catalytic surface, 2) gas reactive and non-catalytic surface, 3) gas reactive and fully-catalytic surface. The results showed that the number of reactions, both in the flow and on the nose surface, is higher for Earth and, correspondingly, also the effects on the aerodynamic quantities.

Synthesis of Zinc Oxide Nanoparticle-(C60) Fullerene Nanowhisker Composite for Catalytic Degradation of Methyl Orange under Ultraviolet and Ultrasonic Irradiation

  • Ko, Jeong Won;Son, Yeon-A;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.321-328
    • /
    • 2020
  • Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and sodium hydroxide (NaOH) were dissolved in distilled water and stirred for 30 min. The resulting solution was sonicated by an ultrasonic wave for 45 min. This solution was washed with distilled water and ethanol after centrifugation; next, it was placed in an electric furnace at 200℃ for 1 h under the flow of Ar gas to obtain zinc oxide nanoparticle. A zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was synthesized using the zinc oxide nanoparticle solution, C60-saturated toluene, and isopropyl alcohol via the liquid-liquid interfacial precipitation method. The zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite were characterized using X-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and they were used for the catalytic degradation of methyl orange (MO) under ultraviolet (at 254 and 365 nm) and ultrasonic irradiation. In addition, the catalytic degradation of MO over the zinc oxide nanoparticle and zinc oxide nanoparticle-(C60) fullerene nanowhisker composite was evaluated using ultraviolet-visible spectroscopy.

Real-Time Voltammetric Assay of Lead Ion in Biological Cell Systems

  • Ly, Suw-Young
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.231-235
    • /
    • 2009
  • Trace lead detection for cyclic voltammetry (CV) and square-wave (SW) stripping voltammetry was performed using mercury immobilized onto a carbon nanotube electrode (HNPE). Using the characteristics of mercury and the catalytic carbon nanotube structure, a modified technique, the $0.45{\mu}g/l$ detection limit of lead ion was attained. The developed method can be applied to pond water, fish tissue, plant tissue, and in vivo direct assay.

Polarography에 依한 Cupric-thiocyanate의 Kinetics와 Cuprous-thiocyanate의 Adsorption Wave에 關한 硏究 (Polarographic Studies on the Kinetics of Cu(II)-thiocyanate and the Adsorption Wave of Cu(I)-thiocyanate)

  • 황정의;정종재;손무용;박유철
    • 대한화학회지
    • /
    • 제14권3호
    • /
    • pp.213-219
    • /
    • 1970
  • In the presence of hydrogen peroxide, the effects of temperature and pH to the catalytic reaction velocity of cupric -thiocyanate and the quantities of reduction products adsorbed on the D.M.E. have been studied by polarographic method. According to these experiments, the following empirical equation has been derived for the relation among temperature $T_i$, concentration of hydrogen ion $pH_i$ and adsorbed cuprous-thiocyanate in moles/$cm^2Z_{ij}$, and rate constant log$K_{ij}$ $$log\;K_{ij}=\frac{1}{T_i}\{A(pH_j)+B\}+C(pH_j)+D$$ $$Z_{ij}=\frac{1}{T_i}\{{\alpha}(pH_j)^{\frac{1}{2}}+{\beta}\}+{\gamma}(pH_j)^{\frac{1}{2}}+{\delta}$$ where, A,B,C,D and {$\alpha},{\beta},{\gamma},{\delta}$ are constants. The Calculated values by both equations are well agreed with empirical values within 8% in the error.

  • PDF

Integrated Microdisk Gold Electrode Modified with Metal-porphyrin and Metal-phthalocyanines for Nitric Oxide Determination in Biological Media

  • Kim, Il-Kwang;Bae, Hyun-Ok;Oh, Gi-Soo;Chung, Hun-Taeg;Kim, Young-Jin;Chun, Hyun-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1579-1584
    • /
    • 2003
  • An integrated gold microdisk electrode was constructed and modified with metal-porphyrin or metal-phthalocyanines for NO determination in biological media. Microanalysis of NO using square wave anodic stripping voltammetry in $1\;{\times}\;10^{-2}$ M $HClO_4$ was optimal when the accumulation potential was 0.1 V, frequency 100 Hz, and the scan rate was 200 mV/s. When the electrode was modified with metal-porphyrin or metal-phthalocyanines, the anodic peak currents of NO increased due to the catalytic oxidation of NO. In case of Fe(II)-phthalocyanine modified electrode, the peak currents remarkably increased and the sensitivity was high. The calibration curve had good linearity in the range from $3.6\;{\times}\;10^{-5}$ M to $7.2\;{\times}\;10^{-7}$ M, and the detection limit was $5.7\;{\times}\;10^{-7}$ M. For the structural stability and increased sensitivity, Fe(II)-phthalocyanine modified gold microdisk electrode coated with Nafion was applied to determination of NO released from cultured macrophase.

페로브스카이트 태양전지 상용화를 위한 자외선 및 수분 안정성 향상 전략 (A Brief Review on Strategies for Improving UV and Humidity Stability of Perovskite Solar Cells Towards Commercialization)

  • 황은혜;권태혁
    • Current Photovoltaic Research
    • /
    • 제10권2호
    • /
    • pp.49-55
    • /
    • 2022
  • With rapid growth in light-harvesting efficiency from 3.8 to 25.8%, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attention as promising photovoltaic devices. However, despite of their outstanding performance, the commercialization of PSCs has been suffered from severe stability issues, especially for UV and humidity: (i) UV irradiation towards PSCs is able to lead UV-induced decomposition of perovskite films or catalytic reactions of charge-transporting layers, and (ii) exposure to surrounding humidity causes irreversible hydration of perovskite layers by the penetration of water molecules, resulting considerable decrease in their power-conversion efficiency (PCE). This review investigates current status of strategies to enhance UV and humidity stability of PSCs in terms of UV-management and moisture protection, respectively. Furthermore, the multifunctional approach to increase long-term stability as well as performance is discussed as advanced research directions for the commercialization of PSCs.