• Title/Summary/Keyword: Catalytic degradation

Search Result 185, Processing Time 0.027 seconds

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming;Zhao, Hui;Wang, Zhiliang;Wang, Guangli;He, Aizhen;Jiang, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.215-220
    • /
    • 2012
  • ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.

A Study of Upgrading of Pyrolysis Wax Oil Obtained from Pyrolysis of Mixed Plastic Waste (혼합폐플라스틱 열분해 왁스오일의 고급화 연구)

  • Lee, Kyong-Hwan;Nam, Ki-Yun;Song, Kwang-Sup;Kim, Geug-Tae;Choi, Jeong-Gil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.321-324
    • /
    • 2009
  • Upgrading of pyrolysis wax oil has been conducted in a continuous fixed bed reactor at $450^{\circ}C$, 1hour, LHSV 3.5/h. The catalytic degradation using HZSM-5 catalyst are compared with the thermal degradation and also was studied with a function of experimental variables. The raw pyrolysis wax oil shows relatively high boiling point distribution ranging from around $300^{\circ}C$ to $550^{\circ}C$, which has considerably higher boiling point distribution than that of commercial diesel. The product characteristic from thermal degradation shows a similar trend with that of raw pyrolysis wax oil. This means the thermal degradation of pyrolysis wax oil at high degradation temperature is not sufficiently occurred. On the other hand, the catalytic degradation using HZSM-5 catalyst relative to the thermal degradation shows the high conversion of pyrolysis wax oil to light hydrocarbons. This liquid product shows high gasoline range fraction as around 90% fraction and considerably high aromatic fraction in liquid product. Also, in the catalytic degradation the experimental variable such as catalyst amount and reaction temperature was studied.

  • PDF

Room-temperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation

  • Mondal, Arijit;Mondal, Asish;Mukherjee, Debkumar
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.67-79
    • /
    • 2015
  • Air stable nanoparticles were prepared from cobalt sulphate using tetra butyl ammonium bromide as surfactant and sodium borohydride as reductant at room temperature. The cobalt nanocolloids in aqueous medium were found to be efficient catalysts for the degradation of toxic organic dyes. Our present study involves degradation of Methylene Blue and Rhodamine-B using cobalt nanoparticles and easy recovery of the catalyst from the system. The recovered nanoparticles could be recycled several times without loss of catalytic activity. Palladium nanoparticles prepared from palladium chloride and the same surfactant were found to degrade the organic dyes effectively but lose their catalytic activity after recovery. The cause of dye colour discharge by nanocolloids has been assigned based on our experimental findings.

Removal of Rhodamine Dye from Water Using Erbium Oxide Nanoparticles

  • Luaibi, Hasan M.;Al-Taweel, Saja S.;Gaaz, Tayser Sumer;Kadhum, Abdul Amir H.;Takriff, Mohd S.;Al-Amiery, Ahmed A.
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.747-752
    • /
    • 2019
  • Environmental pollution remains a considerable health risk source all over the world; however, hazards are usually higher in developing countries. Iraq has long been suffering from the problem of pollution and how to treat pollution. Photocatalytic degradation has turned out to be most productive process for dye degradation. In this investigation, Rhodamine B (RhB), dye has been selected for degradation under visible light illumination. To address this issue, we fabricate erbium trioxide nanoparticles (Er2O3/NPs). Erbium trioxide nanoparticles are prepared and utilized for photo-catalytic degradation. The characterization of Er2O3/NPs is described and confirmed by utilizing of XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy). The average size of Er2O3 nanoparticles is observed to be 16.00 nm. Er2O3/NPs is investigated for its ability of photo-catalytic degradation through certain selected parameters such as concentration and time. The methodological results show that the synthesized Er2O3/NPs is a good photo-catalytic for Rhodamine degradation.

Degradation Properties of Ibuprofen Using Photocatalytic Process (광촉매 공정에 따른 이부프로펜의 분해 특성)

  • Cai, Jin-Hua;Na, Seung-Min;Ahn, Yun-Gyong;Lee, Se-Ban;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.411-419
    • /
    • 2012
  • In this study, Ibuprofen (IBP) degradation by the photo catalytic process was investigated under various parameters, such as UV intensity, optimum dosage of $TiO_2$, alkalinity, temperature and pH of bulk solution. The pseudo-first order degradation rate constants were in the order of $10^{-1}$ to $10^{-4}min^{-1}$ depending on each condition. The Photocatalytic IBP degradation rate increased with an increase in the applied UV power. At high UV intensity a high rate of tri-iodide ($I_3{^-}$) ion formation was also observed. Moreover, in order to avoid the use of an excess catalyst, the optimum dosage of catalyst under the various UV intensities (30 and 40 W/L) was examined and ranged from approximately 0.1 $gL^{-1}$. The photo catalytic IBP degradation rate was changed depending on the alkalinity and temperature and pH in the aqueous solution. This study demonstrated the potential of photo catalytic IBP degradation under different conditions.

Simulated Degradation of a Catalytic Converter (배기정화용 촉매장치의 열화 모사)

  • 임명택;위전석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • Use of a phenomenological model, developed far prediction of catalytic deactivation, is demonstrated in comparing harshness of different driving cycles that are currently used to rapidly age catalytic converters on engine test benches. The model shows that seemingly equivalent driving cycles cause the catalytic converters to reach significantly different levels of deactivation. The comparison of the model prediction with the limited vehicle data seems encouraging despite the simplicity of the model at the current stage of its infancy.

Catalytic Ozonation of Phenol in Aqueous Solution by Co3O4 Nanoparticles

  • Dong, Yuming;Wang, Guangli;Jiang, Pingping;Zhang, Aimin;Yue, Lin;Zhang, Xiaoming
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2830-2834
    • /
    • 2010
  • The degradation efficiencies of phenol in aqueous solution were studied by semi-continuous experiments in the processes of ozone alone, ozone/bulky $Co_3O_4$ and ozone/$Co_3O_4$ nanoparticles. Catalyst samples (bulky $Co_3O_4$ and $Co_3O_4$ nanoparticles) were characterized by X-ray diffraction and transmission electron microscopy. The Brunauer-Emmett-Teller surface area, $pH_{pzc}$ and the density of surface hydroxyl groups of the two catalyst samples were also measured. The catalytic activity of $Co_3O_4$ nanoparticles was investigated for the removal of phenol in aqueous solutions under different reaction temperatures. Tert-butyl alcohol had little effect on the catalytic ozonation processes. Based on these results, the possible catalytic ozonation mechanism of phenol by $Co_3O_4$ nanoparticles was proposed as a reaction process between ozone molecules and pollutants.

Verification of Heme Catalytic Cycle with 5-Aminosalicylic Acid and Its Application to Soil Remediation of Polycyclic Aromatic Hydrocarbons

  • Chung, Namhyun;Park, Kapsung;Stevens, David K.;Kang, Guyoung
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.139-143
    • /
    • 2014
  • Catalytic degradation of pentachlorophenol in soil by heme and hydrogen peroxide has been hypothesized to occur through nonspecific catalytic reactions similar to those involving ligninase. The present study examines the evidence for a heme catalytic mechanism for the oxidation of organic compounds. In the presence of hydrogen peroxide, heme is converted to the ferryl heme radical (Hm-$Fe^{+4{\cdot}}$), which can oxidize organic compounds, such as 5-aminosalicylic acid (5-ASA). A second 5-ASA may later be oxidized by ferryl heme (Hm-$Fe^{+4}$), which reverts to the ferric heme state (Hm-$Fe^{+3}$) to complete the cycle. We believe that this catalytic cycle is involved in the degradation of hazardous pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Remediation via heme catalytic reactions of PAHs in soil from a pole yard was evaluated, and about 96% of PAHs was found to disappear within 42 days after treatment with heme and hydrogen peroxide. In addition, benzo[a]pyrene and six other PAHs were undetectable among a total of 16 PAH compounds examined. Therefore, we propose heme catalysis as a novel technology for the remediation of hazardous compounds in contaminated soil.

Degradation of Volatile Hydrocarbons Using Continuous-Flow Photocatalytic Systems with Enhanced Catalytic Surface Areas

  • Jo, Wan-Kuen;Yang, Sung-Hoon;Shin, Seung-Ho;Yang, Sung-Bong
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.91-96
    • /
    • 2011
  • Limited information is available on the degradation of volatile hydrocarbons determined via the use of plate-inserted photocatalytic reactors. This has led to the evaluation of surface areas of cylindrical continuous-flow photocatalytic reactors for the degradation of three selected aromatic hydrocarbons. Three types of reactors were prepared: a double cylinder-type, a single cylindrical-type without plates and a single cylindrical-type with inserted glass tubes. According to diffuse reflectance, FTIR and X-ray diffraction (XRD) spectroscopy, the surface characteristics of a coated photocatalyst were very similar to those of raw $TiO_2$, thereby suggesting that the coated photocatalyst exhibited the same photocatalytic activity as the raw $TiO_2$. The photocatalytic degradation efficiencies were significantly or slightly higher for the single cylinder-type reactor than for the double cylinder-type reactor which had a greater catalytic surface area. However, for all target compounds, the degradation efficiencies increased gradually when the number of plates was increased. Accordingly, it was suggested that the surface area being enhanced for the plate-inserted reactor would elevate the photocatalytic degradation efficiency effectively. In addition, this study confirmed that both initial concentrations of target compounds and flow rates were important parameters for the photocatalytic removal mechanism of these plate-inserted photocatalytic reactors.

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.