• Title/Summary/Keyword: Catalytic cycle

Search Result 93, Processing Time 0.026 seconds

Verification of Heme Catalytic Cycle with 5-Aminosalicylic Acid and Its Application to Soil Remediation of Polycyclic Aromatic Hydrocarbons

  • Chung, Namhyun;Park, Kapsung;Stevens, David K.;Kang, Guyoung
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.139-143
    • /
    • 2014
  • Catalytic degradation of pentachlorophenol in soil by heme and hydrogen peroxide has been hypothesized to occur through nonspecific catalytic reactions similar to those involving ligninase. The present study examines the evidence for a heme catalytic mechanism for the oxidation of organic compounds. In the presence of hydrogen peroxide, heme is converted to the ferryl heme radical (Hm-$Fe^{+4{\cdot}}$), which can oxidize organic compounds, such as 5-aminosalicylic acid (5-ASA). A second 5-ASA may later be oxidized by ferryl heme (Hm-$Fe^{+4}$), which reverts to the ferric heme state (Hm-$Fe^{+3}$) to complete the cycle. We believe that this catalytic cycle is involved in the degradation of hazardous pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Remediation via heme catalytic reactions of PAHs in soil from a pole yard was evaluated, and about 96% of PAHs was found to disappear within 42 days after treatment with heme and hydrogen peroxide. In addition, benzo[a]pyrene and six other PAHs were undetectable among a total of 16 PAH compounds examined. Therefore, we propose heme catalysis as a novel technology for the remediation of hazardous compounds in contaminated soil.

Life Cycle Assessment of Ethanol Production Process Based on Catalytic Reaction (촉매반응에 의한 에탄올 생산공정의 전 과정 평가)

  • Chung, Yonsoo;Hwang, Ilhoon;Yeo, Yeong-Koo;Joo, Oh-Shim;Jung, Kwang-Deog
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.323-327
    • /
    • 2006
  • In this paper, the methodology of life-cycle assessment was applied to an ethanol production process based on catalytic reaction. The environmental performance of the process was quantified and compared with that of the fermentation process. The purpose of the assessment was to develop design guidelines for the environmentally better ethanol production. The assessment was carried only on the stages of raw material acquisition through ethanol manufacture since it was assumed that ethanol from two processes had the same environmental impacts through its use and discard. The inventory analysis of the catalytic process resulted in that carbon dioxide from methanol production was the major environmental impact. The impact assessment showed that the fermentation process was environmentally better than the catalytic one. Suggestions for environmental improvement of the catalytic process were prepared based on the assessment results.

The Oxidation of Hydrazobenzene Catalyzed by Cobalt Complexes in Nonaqueous Solvents

  • Kim, Stephen S.B.;Hommer, Roger B.;Cannon, Roderick D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.255-265
    • /
    • 2006
  • The oxidation of hydrazobenzene by molecular oxygen in the polar solvent methanol is catalysed by a Schiff's base complex Co(3MeOsalen) which is a synthetic oxygen carrier. The products are trans-azobenzene and water. The rate of the reaction has been studied spectrophotometrically and the rate law established. A mechanism involving a ternary complex of catalyst, hydrazobenzene and molecular oxygen has been proposed. The kinetic studies show that a ternary complex $CoL{\cdot}H_2AB{\cdot}O_2$ is involved in the rate determining step. The reactions are summarised in a catalytic cycle. The kinetic data suggest that a ternary complex involving Co(3MeOsalen), triphenyl-phosphine and molecular oxygen is catalytically acive species but at higher triphenylphosphine concentrations the catalyst becomes inactive. The destruction of the catalytic activity could be due to the catalyst becoming coordinated with triphenyl phosphine at both z axis sites of the complex e.g. Co (3MeOsalen)$(PPh_3)_2$.

Catalytic Isomerization of Allyic Alcohols to Carbonyl Compounds with Rh(ClO$_4$)(CO)(PPh$_3)_2$ and [Rh(CO)(PPh$_3)_3$]ClO$_4$

  • Chin Chong Shik;Park Jeonghan;Kim Choongil
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.102-103
    • /
    • 1989
  • Four coordinated rhodium(Ⅰ) complexes, Rh($ClO_4$)(CO)$(PPh_3)_2$ and [$Rh(CO)(PPh_3)_3$]$ClO_4$(2) catalyze the iosmerization of allylic alcohols to the corresponding carbonyl compounds at room temperature under nitrogen. The isomerization is faster with 2 than with 1, which is understood in terms of relative ease of the last step of the catalytic cycle, the reductive elimination of enol. Relative rates of the isomerization with 1 and 2 for different allylic alcohols are also explained by the relative ease of the enol elimination step in part. The first step of the catalytic cycle, the complex formation of the allylic alcohol through the ${\pi}-system$ of the olefinic group of the allylic alcohol and the following step, formation of hydridoallyl complex also seem to affect the overall rate of the isomerization.

Catalytic effects of heteroatom-rich carbon-based freestanding paper with high active-surface area for vanadium redox flow batteries

  • Lee, Min Eui;Kwak, Hyo Won;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.28
    • /
    • pp.105-110
    • /
    • 2018
  • Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (${\sim}820m^2g^{-1}$) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (${\Delta}E_p$) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of $5mV\;s^{-1}$. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

The study on kinetic value for simulation in fluidized catalytic gasification (유동층에서의 촉매 석탄가스화 공정 모델 모사를 위한 kinetics에 대한 연구)

  • Jang, Dong-Ha;Jeon, Young-Shin;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.74.1-74.1
    • /
    • 2011
  • As a demand for energy, many studies are increasing about energy resource. One of these resources is coal which reserves of underground. A lot of research to use coal is going on as method of IGCC (Integrated Gasification Combined Cycle). In addition, SNG(Substitute Natural Gas) and IGFC (Integrated Gasification Fuel Cell) are also being developed for fuel & electricity. This technology which uses synthesis gas after gasification is to produce electricity from the Fuel Cell. At this point, important thing is the components of synthesis gas. The main objective is to increase the proportion of methane and hydrogen in synthesis gas. The catalytic gasification is suitable to enhance the composition of methane and hydrogen. In this study, Exxon Predevelopment catalyst gasification study was served as a good reference and then catalytic gasification simulation process is conducting using Aspen Plus in this research. For this modelling, kinetic value should be calculated from Exxon's report which is used for modeling catalytic gasification. Catalytic gasification model was performed by following above method and was analyzed by thermodynamic method through simulation results.

  • PDF

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Decomposition of Sulfuric Acid at Pressurized Condition in a Pt-Lined Tubular Reactor (관형 Pt-라이닝 반응기를 이용한 가압 황산분해반응)

  • Gong, Gyeong-Taek;Kim, Hong-Gon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • Sulfur-Iodine (SI) cycle, which thermochemically splits water to hydrogen and oxygen through three stages of Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition, seems a promising process to produce hydrogen massively. Among them, the decomposition of $H_2SO_4$ ($H_2SO_4=H_2O+SO_2+1/2O_2$) requires high temperature heat over $800^{\circ}C$ such as the heat from concentrated solar energy or a very high temperature gas-cooled nuclear reactor. Because of harsh reaction conditions of high temperature and pressure with extremely corrosive reactants and products, there have been scarce and limited number of data reported on the pressurized $H_2SO_4$ decomposition. This work focuses whether the $H_2SO_4$ decomposition can occur at high pressure in a noble-metal reactor, which possibly resists corrosive acidic chemicals and possesses catalytic activity for the reaction. Decomposition reactions were conducted in a Pt-lined tubular reactor without any other catalytic species at conditions of $800^{\circ}C$ to $900^{\circ}C$ and 0 bar (ambient pressure) to 10 bar with 95 wt% $H_2SO_4$. The Pt-lined reactor was found to endure the corrosive pressurized condition, and its inner surface successfully carried out a catalytic role in decomposing $H_2SO_4$ to $SO_2$ and $O_2$. This preliminary result has proposed the availability of noble metal-lined reactors for the high temperature, high pressure sulfuric acid decomposition.