• Title/Summary/Keyword: Catalytic cracking of naphtha

Search Result 5, Processing Time 0.016 seconds

Contribution of Advanced or Alternative Process to Carbon-Dioxide Emission Reduction in Olefin Production Plant (올레핀(Olefin) 생산 공정에서 발생하는 이산화탄소 배출 저감을 위한 신기술 적용 효과)

  • Wee, Jung-Ho;Choi, Kyoung-Sik;Kim, Jeong-In;Lee, Sang-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.679-689
    • /
    • 2009
  • Light olefins are very important hydrocarbons widely used as the raw materials of the most petrochemicals including plastics and medicines. In addition, the nation's olefin production capacity is regarded as one of the key indicators to predict the nation's economic scale and growth. Steam cracking of naphtha (or called "NCC (Naphtha Cracking Center) technology"), the traditional process to produce light olefins, is one of the most consuming energy processes among the chemical industries. Therefore, this process causes tremendous $CO_2$ emission. To reduce the energy consumption and $CO_2$ emission from NCC process, the present paper, firstly, investigates and analyses some alternative technologies which can be potentially substituted for traditional process. Secondly, applying the alternative technologies to NCC process, their effects such as energy savings, $CO_2$ emission reduction and CER (Certified Emission Reduction) were estimated. It is found that the advanced NCC process can reduce approximately 35% of SEC (Specific Energy Consumption) of traditional NCC process. This effect can lead to the reduction of 3.3 million tons of $CO_2$ and the acquisition of the 128 billion won of CER per year. Catalytic cracking of naphtha technology, which is other alternative processes, can save up to approximately 40% of SEC of traditional NCC process. This value equates to the 3.8 million tons of $CO_2$ mitigation and 147 billion won of CER per year.

Effects of Inhibition on Formation and Growth of Polymer in Butadiene Extraction Unit (Butadiene Extraction Unit 내의 Polymer 생성 억제 효과)

  • Im, Gyeong
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.63-73
    • /
    • 1992
  • There are many methods of obtaining butadiene described in the literature. In the america it is produced largely from petroleum gases, i.e., by catalytic dehydrogenation of butene of butene-butane mixtures. Butadiene can be recovered from the $C_4$ residue of an olefin plant by distilling off a fraction containing most of the butadiene, catalytically hydrogenating the higher acetylenes to olefins and separating the product from other olefins and isobutane by extraction. Also it can be obtained by cracking naphtha and light oil. Among the individual dienes of commercial importance, 1, 3-butadiene is of first importance. It is used primarily for the production of polymers.In the present paper, it was investigated for a effect of the formation and the growth inhibition of popped corn polymer in butadiene extraction unit. As a result of study, inhibitors, $NaNO_2$ and TBC were good effective for inhibition of the formation and growth in popcorn polymer. The rational formula of popcorn polymer obtained was $(C_4H_6)_x$.

  • PDF

Study of Hydrotreating and Hydrocracking Catalysts for Conversion of Waste Plastic Pyrolysis Oil to Naphtha (폐플라스틱 열분해유의 납사 전환을 위한 수첨처리 및 수첨분해 촉매연구)

  • Ki-Duk Kim;Eun Hee Kwon;Kwang Ho Kim;Suk Hyun Lim;Hai Hung Pham;Kang Seok Go;Sang Goo Jeon;Nam Sun Nho
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.126-130
    • /
    • 2023
  • In response to environmental demands, pyrolysis is one of the practical methods for obtaining reusable oils from waste plastics. However, the waste plastic pyrolysis oils (WPPO) are consumed as low-grade fuel oil due to their impurities. Thus, this study focused on the upgrading method to obtain naphtha catalytic cracking feedstocks from WPPO by the hydroprocessing, including hydrotreating and hydrocracking reaction. Especially, various transition metal sulfides supported catalysts were investigated as hydrotreating and hydrocracking catalysts. The catalytic performance was evaluated with a 250 ml-batch reactor at 370~400 ℃ and 6.0 MPa H2. Sulfur-, nitrogen-, and chlorine-compounds in WPPO were well eliminated with nickel-molybdenum/alumina catalysts. The NiMo/ZSM-5 catalyst has the highest naphtha yield.

Comparison of Analytical Methods of Products in Hydrocracking of Vacuum Residue (감압잔사유 수첨분해반응의 생성물 분석방법 비교)

  • Kweon, Hyuk-Min;Kim, Han-Na;Huy, Chinh Nguyen;Kim, Do-Kyong;Kim, Do-Woan;Oh, Seung-Hoon;Shin, Eun-Woo
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • In this study, hydrocarcking of vacuum residue was carried out in an autoclave reactor at $450^{\circ}C$ and $500^{\circ}C$ with a commercial catalyst (HDM) and the quantitative product distributions were analyzed by GC-SIMDIS method or simple distillation. During catalytic hydrocracking, thermal cracking also occurred together with catalytic cracking and the higher conversion and selectivity of gasoline and naphtha were obtained at high reaction temperature. GC-SIMDIS and simple distillation revealed different results for the analysis of products produced at different hydrocracking temperatures; almost same results were obtained for the product produced at $500^{\circ}C$ but different ones for the product produced at $450^{\circ}C$. In the analysis of product produced at $450^{\circ}C$, the GC-SIMDIS showed that a main product was VGO while a main product in the simple distillation was diesel, which implies that the simple distillation for the $450^{\circ}C$ reaction was not accurate due to thermal cracking of the product by the simple distillation.

Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Removal (무전해 도금법으로 제조된 구리 함유 활성탄소섬유 촉매의 제조와 NO 제거 반응성 평가)

  • Yoon, Hee-Seung;Oh, Jong Hyun;Lee, Hyung Keun;Jeon, Jong-Ki;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.863-867
    • /
    • 2008
  • Pitch based activated carbon fiber(ACF) was prepared from reformed naphtha cracking bottom oil(NCB oil) by melt spinning. The fibers obtained were stabilized, carbonized, and then steam activated. The ACF was sensitized with Pd-Sn catalytic nuclei via a single-step activation approach. This sensitized ACF was used as precursors for obtaining copper plated ACFs via electroless plating. ACFs uniformly decorated with metal particles were obtained with reduced copper plating in the reaction solution. Effects of the amount of copper on characteristics of ACF/Cu catalysts were investigated through BET surface area, X-ray diffraction, scanning emission microscopy, and ICP. The amount of copper increased with plating time, but the surface area as well as the pore volume decreased. NO conversion increased with reaction temperature. NO conversion decreased with increasing the amount of copper, which is seemed to be due to the reduction of surface area as well as the dispersion of copper.