• 제목/요약/키워드: Catalytic Metal

검색결과 626건 처리시간 0.024초

Ozone-Enhanced Remediation of Diesel-Contaminated Soil (II): A Column Study (Ozone에 의한 유류오염토양 복원 연구 (II) : 토양 컬럼상에서의 오존 산화)

  • Choi, Heechul;Heechul;Lim, Hyung-Nam;Kim, Kwang-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제22권10호
    • /
    • pp.1825-1832
    • /
    • 2000
  • Column experiments were conducted by using soil columns, to investigate feasibility and efficiency of in-situ ozone enhanced remediation for diesel-contaminated soil. The injection of gaseous ozone into soil column revealed the enhanced decomposition of ozone due to the catalytic reaction between ozone and metal (e.g., Fe, Mn etc.) oxides as evidenced by as much as 25 times shorter half-life of ozone in a sand packed column than in a glass beads packed column. Substantial retardation in the transport of and the consumption of ozone were observed in the diesel contaminated field soil and sand packed columns. After 16 hrs ozonation, 80% of the initial mass of diesel (as diesel range organic) concentration of $800{\pm}50mg/kg$, was removed under the conditions of the flow rate of 50mL/min and $6mg-O_3/min$. Whereas, less than 30% of diesel was removed in the case of air injection. Analysis of the residual TPH(total petroleum hydrocarbon) and selected 8 aliphatics of diesel compounds in the inlet and the outlet of the column confirmed that diesel nonselectively reacted with ozone and then shifted to lower carbon numbered molecules. Water content also was found to be an important parameter in employing ozone to the hydrocarbon-contaminated soil.

  • PDF

Catalytic Activity of Ga(Ⅲ)-, In(Ⅲ)- and Tl(Ⅲ)-porphyrin Complexes (Ga(Ⅲ), In(Ⅲ) 및 Tl(Ⅲ) 금속이온을 포함한 Metalloporphyrin 착물의 촉매적 특성)

  • Park, Yu Chul;Na, Hun Gil;Kim, Seong Su
    • Journal of the Korean Chemical Society
    • /
    • 제39권5호
    • /
    • pp.364-370
    • /
    • 1995
  • The catalytic oxidations of several olefins in $CH_2Cl_2$ have been investigated using non-redox metalloporphyrin (M=Ga(III), In(III), Tl(III)) complexes as catalyst and sodium hypochlorite as terminal oxidant. Porphyrins were $(p-CH_3O)TPP,\;(p-CH_3)TPP,\;TPP,\;(p-F)TPP,\;(p-Cl)TPP\;and\;(F_20)TPP$ (TPP=tetraphenylporphyrin), and olefins were $(p-CH_3O)-,\;(p-CH_3)-,\;(p-H)-,\;(p-F)-,\;(p-Cl)-\;and\;(p-Br)styrene$styrene and cyclopentene and cyclohexene. The substrate conversion yield was discussed according to the substituent effects of metalloporphyrin and substrate, and the radius effect of non-redox metal ion. The conversion yield of substrate by changing the substituent of TPP increased in the order of $p-CH_3O$ < $p-CH_3$ < H < p-F < p-Cl, which was consistent with the sequence of $4{\sigma}$ values of TPP. But the substituent effect of substrate on the conversion yield decreased with increasing the ${\sigma}^+$ values on substrates in the order of p-CH3O > p-CH3 > H > p-Cl > p-Br. For the oxidation of several olefins, the complexes of In(III)- and Tl(III)-porphyrins turned out to be more active catalysts than Ga(III)-porphyrin.

  • PDF

Oxidative Coupling Reaction of Purified Aldrich Humic Acid by Horseradish Peroxidase (산화환원효소에 의한 휴믹산의 산화중합반응)

  • Jee, Sang-Hyun;Kim, Do-Gun;Kim, Jeong-Hyun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제32권11호
    • /
    • pp.1054-1062
    • /
    • 2010
  • Oxidative coupling reactions of humic substances (HS) can be catalyzed by a variety of natural extracellular enzymes and metal oxides. In this study, property changes of HS induced by a natural enzyme, horseradish peroxidase (HRP), and the effect of it to microfiltration (MF) were investigated. PAHA was transformed by oxidative coupling reaction with HRP and hydrogen peroxide ($H_2O_2$), verifying the catalytic effects of the HRP. Size exclusion chromatography (SEC) revealed that weight-average molecular weight (MWw) of PAHA was proportionally increased with the dosages of HRP and $H_2O_2$, indicating the transform action of HS into larger and complex molecules. An increase in the conformational stability of HS was achieved through the promotion of intermolecular covalent bondings between heterogeneous humic molecules. Spectroscopic analysis (fluorescence and infrared spectroscopy) proved that functional groups were transformed by the reaction. Additionally, HS and transformed products were undergone microfiltration (MF) to examine the treatment potential of them in a water treatment facility. Original HS could not be removed by MF but larger molecules of transformed products could be removed. Meanwhile, transformed products caused more fouling on the filtration than original HS. This results proved that natural organic matter (NOM) can be removed by MF after its increase in molecular size by oxidative coupling reaction.

Characteristic Evaluation of SCR catalyst using Aluminum dross (알루미늄 폐드로스를 활용한 SCR 탈질촉매 제조 및 특성평가)

  • Bae, Min A;Kim, Hong Dae;Lee, Man Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제14권10호
    • /
    • pp.4672-4678
    • /
    • 2013
  • Aluminum dross is formation at the surface of the molten metal as the latter reacts with the furnace atmosphere and it was an unavoidable by-product of the aluminum production process. However aluminum dross was usually landfilled or disposed without treatment, causing much environmental damage. The purpose of this study is to investigate the possibility of ceramic catalyst support using recycled Al dross. The recycled Al dross was made into SCR catalyst by mixing with $WO_3$, $V_2O_5$ and $TiO_2$. The $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR catalyst was observed with XRF, XRD and BET. $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR strength was measured by Universal Testing Machine(UTM). As the added $Al_2O_3$, streagth is increased. And the NOx removal activity was observed by MR(Micro-Reactor). The temperatures ranging from $350^{\circ}C$ and $400^{\circ}C$, $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR catalyst De-NOx performance result of showed excellent activity over 90% at application condition.

Selective Oxidation of Hydrogen Sulfide Containing Ammonia and Water Using Fe2O3/SiO2 Catalyst (Fe2O3/SiO2 촉매 상에서 물과 암모니아가 함께 존재하는 황화수소의 선택적 산화 반응)

  • Kim, Moon-Il;Lee, Gu-Hwa;Chun, Sung-Woo;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.398-402
    • /
    • 2012
  • The catalytic performance of some metal oxides in the vapor phase selective oxidation of $H_2S$ in the stream containing ammonia and water was investigated. Among the catalysts tested $Fe_2O_3/SiO_2$ was the most promising catalyst for practical application. It showed higher than 90% $H_2S$ conversion and very small amount of $SO_2$ emission over a temperature range of $240{\sim}280^{\circ}C$. The effects of reaction temperature, $O_2/H_2S$ ratio, amount of ammonia and water vapor on the catalytic activity of $Fe_2O_3/SiO_2$ were discussed to better understand the reaction mechanism. The $H_2S$ conversion showed a maximum at $260^{\circ}C$ and it decreased with increasing temperature over $280^{\circ}C$. With an increase of $O_2/H_2S$ ratio from 0.5 to 4, the conversion was slightly increased, but the selectivity to elemental sulfur was remarkably decreased. The increase of ammonia amount favored the conversion and the selectivity to elemental sulfur with a decrease in $SO_2$ production. The presence of water vapor decreased both the activity and the selectivity to sulfur, but increased the ATS selectivity.

Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review (바이오매스 유래 함산소 화합물의 수첨탈산소 촉매 반응: 총설)

  • Ha, Jeong-Myeong
    • Clean Technology
    • /
    • 제28권2호
    • /
    • pp.174-181
    • /
    • 2022
  • Biomass is a sustainable alternative resource for production of liquid fuels and organic compounds that are currently produced from fossil fuels including petroleum, natural gas, and coal. Because the use of fossil fuels can increase the production of greenhouse gases, the use of carbon-neutral biomass can contribute to the reduction of global warming. Although biological and chemical processes have been proposed to produce petroleum-replacing chemicals and fuels from biomass feedstocks, it is difficult to replace completely fossil fuels because of the high oxygen content of biomass. Production of petroleum-like fuels and chemicals from biomass requires the removal of oxygen atoms or conversion of the oxygen functionalities present in biomass derivatives, which can be achieved by catalytic hydrodeoxygenation. Hydrodeoxygenation has been used to convert raw biomass-derived materials, such as biomass pyrolysis oils and lignocellulose-derived chemicals and lipids, into deoxygenated fuels and chemicals. Multifunctional catalysts composed of noble metals and transition metals supported on high surface area metal oxides and carbons, usually selected as supports of heterogeneous catalysts, have been used as efficient hydrodeoxygenation catalysts. In this review, the catalysts proposed in the literature are surveyed and hydrodeoxygenation reaction systems using these catalysts are discussed. Based on the hydrodeoxygenation methods reported in the literature, an insight for feasible hydrodeoxygenation process development is also presented.

Effect of Ce/Zr Ratios on Ni/CeO2-ZrO2 Catalysts in Steam Reforming of Methane Reaction (Ce/Zr 비율에 따른 Ni/CeO2-ZrO2 촉매가 메탄의 수증기 개질 반응에서 미치는 영향)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.125-131
    • /
    • 2024
  • In this study, synthesized Ni/CexZr1-xO2 catalysts were coated on the surface of honeycomb metalic monoliths to investigate catalytic activity in steam reforming of methane reactions. Supports with varying Ce/Zr ratios were synthesized to observe their behavior in the reforming reaction, and catalysts with Ni contents ranging from 5 wt% to 20 wt% were prepared to analyze the effect of Ni loading contents on catalytic activity. The catalysts were characterized by XRD, BET, TPR, and SEM. The TPR analysis indicated the formation of Ni-Ce-Zr oxide with a strong interaction between the active metal Ni and CeO2-ZrO2 support. The 15 wt% Ni/Ce0.80Zr0.20O2 catalyst exhibited the highest activity and stability in the steam reforming of methane reaction. Catalysts with enhanced activity and stability were synthesized by manufacturing composite materials using excellent oxygen storage and donor properties of CeO2 and the thermal properties of ZrO2.

Role of Ascorbic Acid in the Depolymerization of Hyaluronic Acid by $Fe^{++}$ and $H_2O_2$ ($Fe^{++}$$H_2O_2$에 의한 hyaluronic acid 분해에 있어서 ascorbic acid의 역할)

  • Lee, Jung-Soo;Chung, Myung-Hee;Lim, Jung-Kyoo;Park, Chan-Woong;Cha, In-Joon
    • The Korean Journal of Pharmacology
    • /
    • 제21권1호
    • /
    • pp.62-77
    • /
    • 1985
  • In tile Iron-catalyzed Haber-Weiss reaction to produce OH., the requirement for $O^{-}_{2}{\cdot}$ is only to reduce $Fe^{+++}$. Possibly, the role of $O^{-}_{2}{\cdot}$ can be replaced by other reducing agents. Ascorbate is one of them in biological system. In the present study, the ability of ascorbate to produce $OH{\cdot}$ in the presence of $Fe^{++}$ and $H_2O_2$ was investigated by observing the degradation of hyaluronic acid and ethylene production from methional. Ascorbate stimulated the degradation of hyaluronic by $Fe^{++}$ and $H_2O_2$. That was confirmed by both viscosity change and gel-permeation chromatographic analysis. The observed degradation was almost completely prevented by catalase and $OH{\cdot}$ scavengers. In support of the above results, ascorbate enhanced the prouction of ethylene from methional in the presence of $Fe^{++}$ and $H_2O_2$. Other reducing agents (cysteine, glutathione, NADH and NADPH) showed similar activities to ascorbate in the degradation of hyaluronic acid and ethylene production. But no stimulatory effects were observed with their oxidized forms such as NAD and NADP. Thus, it appears that reduction of the metal ion was needed for $OH{\cdot}$ production. Among the metal ions tested, $Fe^{++}$ showed most potent catalytic action in the production of $OH{\cdot}$ The results obtained support that ascorbate can substitute $O^{-}_{2}{\cdot}$ in the metal-catalyzed reactions, particularly with $Fe^{++}$ by which $OH{\cdot}$ is produced with $H_2O_2$. The significance of the ascorbate-dependent production of $OH{\cdot}$ was considered with respect to possible role of ascorbate in the damage of inflamed joints.

  • PDF

Synthesis of Several Osmium Redox Complexes and Their Electrochemical Characteristics in Biosensor (오스뮴 착물들의 합성 및 전기화학적인 특성에 관한 연구)

  • Kim, Hyug-Han;Choi, Young-Bong;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • 제11권3호
    • /
    • pp.176-183
    • /
    • 2008
  • Redox complexes to transport electrodes from bioreactors to electrodes are very important part in electrochemical biosensor industry. A novel osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium metal. Newly synthesized osmium complexes are described as ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dmo-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dcl-bpy)}_2{(ap-im)Cl]}^{+/2+}$. We have been studied the electrochemical characteristics of these osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. Osmium redox complexes were immobilized on the screen printed carbon electrode(SPE) with deposited gold nanoparticles. The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. Each catalytic currents were related with the potentials of osmium complexes.

Acute Toxicity of Cadmium on Gene Expression Profiling of Fleshy Shrimp, Fenneropenaeus Chinensis Postlarvae Using a cDNA Microarray (Microarray 분석을 이용한 대하 (Fenneropenaeus chinensis) 유생의 카드뮴 단기 노출에 따른 유전자변화)

  • Kim, Su-Kyoung;Qiao, Guo;Yoon, Jong-Hwa;Jang, In-Kwon
    • Journal of Environmental Science International
    • /
    • 제24권5호
    • /
    • pp.623-631
    • /
    • 2015
  • Microarray technology provides a unique tool for the determination of gene expression at the level of messenger RNA (mRNA). This study, the mRNA expression profiles provide insight into the mechanism of action of cadmium in Fleshy shrimp (Fenneropenaeus chinensis). The ability of genomic technologies was contributed decisively to development of new molecular biomarkers and to the determination of new possible gene targets. Also, it can be approach for monitoring of trace metal using oligo-chip microarray-based in potential model marine user level organisms. 15K oligo-chip for F. chinensis that include mostly unique sets of genes from cDNA sequences was developed. A total of 13,971 spots (1,181 mRNAs up- regulated and 996 down regulated) were identified to be significantly expressed on microarray by hierarchical clustering of genes after exposure to cadmium for different conditions (Cd24-5000 and Cd48-1000). Most of the changes of mRNA expression were observed at the long time and low concentration exposure of Cd48-1000. But, gene ontology analysis (GO annotation) were no significant different between experiments groups. It was observed that mRNA expression of main genes involved in metabolism, cell component, molecular binding and catalytic function. It was suggested that cadmium inhibited metabolism and growth of F. chinensis.