• 제목/요약/키워드: Catalytic Activator

검색결과 21건 처리시간 0.023초

Chlorellaellipsoidea로 부터 polyphosphate phosphohydrolase의 분리, 정제 및 성질 (Purification and properties of polyphosphate phosphohydrolase from chlorella ellipsoidea)

  • 임영복;이영록
    • 미생물학회지
    • /
    • 제21권3호
    • /
    • pp.135-142
    • /
    • 1983
  • The presence of polyphosphate phosphohydrolase (PPPH) and tripolyphosphate phosphohydrolase (TPPH) in Chlorella ellipsoidea were confirmed from the cell-free extract of the algal cells and three forms of PPPH were isolated, purified, and measured Km-Vmax value and inhibitory effect by metal ions, respectively. PPPH was most active at pH7.2, whereas TPPH at pH 7.6. Both enzymes exhibited their maximum activity at $37^{\circ}C$. For the manifestation of catalytic activity, divalent, divalent metal ions are needed, and the best activator for both enzymes was $Co^{++}\;ions\;(10^{-3}M)$. These enzymes were inhibited by $Hg^{++}\;ions\;(10^{-3}M)$ considerably. PPPH from Chlorella ellipsoidea was purified by ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Sephadex A-25, and gel filtration on Sephadex G-100, and some properties of the three different fraction with PPPH activity $(PPPH_1,\;PPPH_2,\;and\;PPPH_3)$ were found, i.e, PPPH has multiple form. The Km values of $PPPH_1,\;PPPH_2,\;and\;PPPH_3$ obstained were $6.25{\times}10^{-4}M,\;10^{-4}M-4/M,\;and\;3.33{times}10^{-4}M$ and Vmax were 3.33 mM/min, 3.33 mM/min, and 2.67 mM/min, respectively. It was shown that the types of inhibition of $Hg^{++} on the activities of three forms of PPPH were competitive inhibition.

  • PDF

HIF-1-Dependent Induction of Jumonji Domain-Containing Protein (JMJD) 3 under Hypoxic Conditions

  • Lee, Ho-Youl;Choi, Kang;Oh, Hookeun;Park, Young-Kwon;Park, Hyunsung
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.43-50
    • /
    • 2014
  • Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using $O_2$, ${\alpha}$-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-$1{\alpha}/{\beta}$ under hypoxia and that treatment with Clioquinol, a HIF-$1{\alpha}$ activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-$1{\alpha}$ and its dimerization partner HIF-$1{\beta}$/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-$1{\alpha}/{\beta}$ heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.

TiO2 함유 피치섬유의 최적 안정화 조건 (The Optimum Stabilization Conditions of TiO2-containing Pitch Fiber)

  • 엄상용;이창호;박관호;유승곤
    • Korean Chemical Engineering Research
    • /
    • 제45권3호
    • /
    • pp.269-276
    • /
    • 2007
  • $TiO_2$ 함유 피치섬유의 최적 안정화 조건을 도출하기 위하여 $TiO_2$의 함유량을 달리하여 피치섬유를 제조한 후, 여러가지 안정화 조건에 대한 섬유의 특성 변화와 금속입자의 거동을 관찰하였다. 공기에 의한 피치섬유의 안정화시 안정화온도가 높고, $TiO_2$ 함유량이 적을수록 산화에 의한 무게증가가 컸다. 안정화된 섬유를 탄화하면 수율은 71~82 wt.% 수준인데, $TiO_2$가 활성촉매 역할을 하여 $TiO_2$의 함유량이 많을수록 탄화수율은 낮았다. 안정화 과정에서 열가소성의 피치섬유는 산소의 도입으로 카르보닐기(C=O)와 카르복실기(-COOH) 등이 형성되며 동시에 이들이 가교결합을 이루고 수소를 탈리시켜 열경화성 섬유로 전환되었다. 활성탄소섬유의 기공크기는 $TiO_2$ 함유량이 증가함에 따라 점점 커졌으며, 주사전자현미경과 투과전자현미경을 통하여 섬유의 표면과 내부에 분포된 $TiO_2$ 입자와 분포를 관찰한 결과 안정화, 탄화 및 활성화공정 중 일부 $TiO_2$가 서로 뭉침을 알 수 있었다. 최종적으로 0.5 wt.% $TiO_2$ 함유 석유계 피치섬유는 $280^{\circ}C$에서 3 hr를 최적 안정화 조건으로 제시할 수 있었다.

인간조직인자 세포외 부분의 효과적인 제조 방법 (An Efficient Method for Production of Extracellular Human Tissue Factor in Escherichia coli)

  • 유환구;박양진;이우일
    • 생명과학회지
    • /
    • 제19권5호
    • /
    • pp.561-565
    • /
    • 2009
  • 인간조직인자는 혈액응고인자 factor VII 과 복합체를 형성하며 연속적인 혈액응고 연쇄반응을 촉매하는 효소 활성체이다. 복합체 형성에 필수적인 이 조직인자의 세포 외 부분이, 기존의 융합 단백질 및 히스티딘 말단이 없는 새로운 발현 벡터에 의해 대장균 내에서 과량 발현 되었다. 봉입체 형태로 발현된 재조합 인간조직인자는 DEAE-Sephacel 크로마토그라피 기술을 적용하여 분리, 정제 및 구조적 복원이 동시에 시도 되었다. 정제된 재조합 단백질은 SDS-PAGE 분석에서 순수한 형태로 나타났으며, 생물학적 활성도 또한 기존의 조직인자와 거의 동등함을 보였다. 본 연구의 발현 및 정제 시스템은 이전의 보고에서 보여진 방법들에 비해 단백질 분해효소를 사용하지 않아 추가적인 크로마토그라피 과정이 필요 없어 좀 더 효율적이기 때문에 기존의 발현 시스템에 대해 대체할 수 있는 매우 유용한 방법으로 제공된다.

The functions of mTOR in ischemic diseases

  • Hwang, Seo-Kyoung;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.506-511
    • /
    • 2011
  • Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/$G{\beta}L$ and PRAS40. mTORC2 contains mTOR, rictor, mLST8/$G{\beta}L$, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.

Effect of DDT on Testosterone Production by Modulator Aromatase (CYP 19) in R2C

  • Lee, Kyung-Jin;Lee, Jong-Bin;Jeong, Hye-Gwang
    • 환경생물
    • /
    • 제21권3호
    • /
    • pp.308-312
    • /
    • 2003
  • Various pesticides known or suspected to interfere with steroid hormone function were screened toy effects in leydig cells on catalytic activity and mRNA expression of aromatase. Dichlorodiphenyltrichloroethane (DDT) is a widespread environmental pollutant. In this study, we investigated the effect of DDT on testosterone production through aromatase activity and its molecular mechanism in testicular leydig cell, R2C by using radioimmunoassay (RIA). As the results, the potent leydig: cell activator LH increased testosterone production compared to the control. DDT exposure significantly decreased testosterone production in R2C cell. In addition, DDT was found to increase aromatase gene expression and activity in R2C cell in a dose dependent manner. In order to assess whether the suppressive effects of DDT on LH-inducible testosterone (T) production might be influenced by the ER, ICI 182.780 was used, and it was found that these inhibitory effects of DDT were antagonized by ICI 182.780, implying that the estrogen receptor (ER) mediates the suppressive effects of DDT. Furthermore, the inducible effects of DDT on aromatase gene expression might be influenced by the ER, ICI 182.780 was used, and it was found that these enhancing effects of DDT were antagonized by ICI 182.780, implying that the ER mediates the inducible effects of DDT. Our results indicated that DDT inhibition of luteinizing hormone (LH) -inducible T production in R2C cell is mediated through aromatase. However, the precise mechanisms by which DDT enhance in R2C cell remains unknown. The current study suggests the possibility that DDT might act as a modulator aromatase gene transcription.

Aurora-A kinase-inactive mutants disrupt the interaction with Ajuba and cause defects in mitotic spindle formation and G2/M phase arrest in HeLa cells

  • Bai, Meirong;Ni, Jun;Shen, Suqin;Huang, Qiang;Wu, Jiaxue;Le, Yichen;Yu, Long
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.631-636
    • /
    • 2014
  • Aurora-A is a centrosome-localized serine/threonine kinase that is overexpressed in multiple human cancers. We previously reported an intramolecular inhibitory regulation of Aurora-A between its N-terminal regulatory domain (Nt, amino acids [aa] 1-128) and the C-terminal catalytic domain (Cd, aa 129-403). Here, we demonstrate that although both Aurora-A mutants (AurA-K250G and AurA-D294G/Y295G) lacked interactions between the Nt and Cd, they also failed to interact with Ajuba, an essential activator of Aurora-A, leading to loss of kinase activity. Additionally, overexpression of either of the mutants resulted in centrosome amplification and mitotic spindle formation defects. Both mutants were also able to cause G2/M arrest and apoptosis. These results indicate that both K250 and D294/Y295 are critical for direct interaction between Aurora-A and Ajuba and the function of the Aurora-A complex in cell cycle progression.

Cloning, Expression, and Characterization of UDP-glucose Pyrophosphorylase from Sphingomonas chungbukensis DJ77

  • Yoon, Moon-Young;Lee, Kyoung-Jin;Park, Hea-Chul;Park, Sung-Ha;Kim, Sang-Gon;Kim, Sung-Kun;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1360-1364
    • /
    • 2009
  • The bacterium Sphingomonas chungbukensis DJ77 produces the extracellular polysaccharide gellan in high yield. Gellan produced by this bacterium is widely used as a gelling agent, and the enzyme UDP-glucose pyrophosphorylase (UGP) is thought to play a key role in the gellan biosynthetic pathway. The UGP gene has been successfully cloned and over-expressed in E. coli. The expressed enzyme was purified with a molecular weight of approximately 32 kDa, as determined by a SDS-polyacrylamide gel, but the enzyme appears as ca. 63 kDa on a native gel, suggesting that the enzyme is present in a homodimer. Kinetic analysis of UDP-glucose for UGP indicates $K_m$ = 1.14 mM and $V_{max}$ = 10.09 mM/min/mg at pH 8.0, which was determined to be the optimal pH for UGP catalytic activity. Amino acid sequence alignment against other bacteria suggests that the UGP contains two conserved domains: An activator binding site and a glucose-1-phosphate binding site. Site-directed mutagenesis of Lys194, located within the glucose-1-phosphate binding site, indicates that substitution of the charge-reversible residue Asp for Lys194 dramatically impairs the UGP activity, supporting the hypothesis that Lys194 plays a critical role in the catalysis.

Valorization of bottom ash with geopolymer synthesis: Optimization of pastes and mortar

  • Froener, Muriel S.;Longhi, Marlon A.;de Souza, Fabiana;Rodriguez, Erich D.;Kirchheim, Ana Paula
    • Advances in concrete construction
    • /
    • 제14권1호
    • /
    • pp.1-13
    • /
    • 2022
  • Due to the physical-chemical characteristics of some bottom ash (BA), there are technical, economic and environmental limitations to find a destination that will add value to it. In Brazil, this residue is eventually used for filling coal extraction pits or remains in sedimentation ponds, creating a susceptible panorama to environmental issues. The geopolymers binders are one of the alternatives to the proper use high amounts of these materials. In this work, geopolymeric binder pastes were produced with BA mixed to activators with different alkali contents (expressed as %Na2O), as well as the incorporation of soluble silicates (Ms content). The production of binary geopolymeric pastes based on the use of two industrial wastes: fluid catalytic cracking (FCC) and aluminum anodizing sludge (AAS), was also assessed. The content in mass of BA/FCC and BA/AAS ranged from 100/0, 90/10; 80/20 and 70/30. Systems with soluble silicates as activator in a molar ratio SiO2/Na2O of 1.0 (Ms = 1.0) and Na2O content of 15%, showed the best results of mechanical strength (42 MPa at day 28th). The improvement is up to 5X when compared to NaOH based systems. For systems with partial replacement of BA of 10% of AAS and 20% of FCC (80/20), the presence of soluble silicates was also effective to increase compressive strength.

The Stimulatory Effect of Garnoderma lucidum and Phellinus linteus on the Antioxidant Enzyme Catalase

  • Park, Jin-Seu;Lee, Byung-Ryong;Jin, Li Hua;Kim, Choong-Kwon;Choi, Kyung-Soon;Bahn, Jae-Hoon;Lee, Kil-Soo;Kwon, Hyeok-Yil;Chang, Hyun-Woo;Baek, Nam-In;Lee, Hwang-Eunjoo;Kang, Jung-Hoon;Cho, Sung-Woo;Choi, Soo-Young
    • BMB Reports
    • /
    • 제34권2호
    • /
    • pp.144-149
    • /
    • 2001
  • Antioxidant enzymes, scavengers of the reactive oxygen intermediate (ROI), are involved in numerous defense systems in cells. In the present study, we investigated the effects of the hot-water extracts of two medicinally potent mushrooms (Ganoderma lucidum and Phellinus linteus) on the activity and expression of antioxidant enzymes in vitro and in vivo. The mushroom extracts stimulated the catalase activity in a dose-dependent manner in vitro, whereas the other antioxidant enzymes (such as superoxide dismutase (SOD), glutathione peroxidase (GPx)) were unaffected by the extracts. The catalytic activity of catalase in the liver and brain was significantly increased after the oral treatment of the mushroom extracts (2.5 g/kg) to ICR mice for 2 months. Western blot analysis of the liver and brain tissues revealed that the expression level of catalase in the mice, treated with both mushroom extracts, was significantly increased compared to that of the control mice. However, the level of the SOD expression in the mice treated with the natural product extracts was unchanged under the same experimental conditions. Although the mechanisms for the stimulatory effect of the catalase expression by these extracts remains unclear, these results suggest that the ingredients of the Ganoderma lucidum and Phellinus linteus extracts act as an activator of catalase, and regulate the expression of catalase at the translational or transcriptional level.

  • PDF