• Title/Summary/Keyword: Catalyst-free

검색결과 269건 처리시간 0.028초

천연가스의 수증기-이산화탄소 복합개질용 촉매 충진 반응기의 코킹 회피 운전을 위한 모사 (Simulation for Possible Coke-Free Operation of a Packed Catalyst Bed Reactor in the Steam-CO2 Reforming of Natural Gas)

  • 이득기;이상수;서동주;윤왕래
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.445-452
    • /
    • 2015
  • A tubular packed bed reactor for the steam-$CO_2$ combined reforming of natural gas to produce the synthesis gas of a target $H_2/CO$ ratio 2.0 was simulated. The effects of the reactor dimension, the feed gas composition, and the gas feeding temperature upon the possibility of coke formation across the catalyst bed were investigated. For this purpose, 2-dimensional heterogeneous reactor model was used to determine the local gas concentrations and temperatures over the catalyst bed. The thermodynamic potential distribution of coke formation was determined by comparing the extent of reaction with the equilibrium constant given by the reaction, $CH_4+2CO{\Leftrightarrow}3C+2H_2O$. The simulation showed that catalysts packed in the central region nearer the entrance of the reactor were more prone to coking because of the regional characteristics of lower temperature, lower concentration of $H_2O$, and higher concentration of CO. With the higher feeding temperature, the feed gas composition of the increased $H_2O$ and correspondingly decreased $CO_2$, or the decrease in the reactor diameter, the volume fraction of the catalyst bed subsequent to coking could be diminished. Throughout the simulation, reactor dimension and reaction condition for coking-free operation were suggested.

Synthesis of High Purity Carbon Nano Fibers and Hydrogen from Propane Decomposition

  • Hussain, S.Tajammul;Gul, Sheraz;Mazhar, M.;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.389-392
    • /
    • 2008
  • High purity carbon nano fibers/tubes (CNF/Ts) which contain 97% pure graphitic carbon are prepared by a new catalytic method. These carbon nano fibers/tubes are ready to use without any further purification. The striking feature of this method is the production of carbon nano fibers/tubes of narrow distribution range. The developed catalytic method also produces pure hydrogen. An additional advantage of this catalytic method is that catalyst can be reused without reactivation. Ni:Cu catalyst system is embodied into SCHOTT-DURAN filter disc of large pore size (40-100 mm). Due to the production of hydrogen in the reaction catalyst stability is enhanced and deactivation process is considerably slowed down.

무용매 , 무유화제 공정에 의한 메틸프룩토시드 올레산 폴리에스테르의 합성 (Solvent-free, Soap-free Synthesis Process of Methyl Fructoside Oleic Acid Polyester)

  • 허주형;김종태;김해성
    • 한국응용과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.45-56
    • /
    • 1998
  • Methyl fructoside oleic acid polyester(MFPE), fructose-based sugar polyester, was synthesized by solvent-free, soap-free transesterification of methyl oleate with methyl fructoside(MF) as a sugar starting material in the presence of conventional potassium carbonate basic catalyst. Methyl fructoside was found to be an effective sugar starting material, because of its low softning point, high heat stability, high miscibility, and high reactivity than other sugars. Yield 98% of purified MFPE based on initial weight of MF was obtained at 1:5 of the molar ratio of methyl fructoside to methyl oleate, 2%(w/w) of potassium carbonate catalyst content, 20${\sim}$200mmHg of reduced pressure and $180^{\circ}C$ of reaction temperature. MFPE structure was confirmed by infrared and proton nuclear magnetic resonance spectroscopy. Physical properties of methyl of fructoside oleic acid polyester such as viscosity, HLB, solubility, color, refractive index, specific gravity, and density were similar to physical properties of sucrose polyesters(SPE) and vegetable oils. Then, it was elucidated that MFPE was sufficient to replace the SPE and conventional oils.

Response Surface Methodological Approach for Optimization of Removal of Free Fatty Acid in Crude Oil

  • Jeong, Gwi-Taek;Lee, Kyoung-Min;Yang, Hee-Seung;Park, Seok-Hwan;Kim, Jae-Hoon;Kim, Do-Man;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.904-909
    • /
    • 2005
  • To optimize the removal of free fatty acid in crude vegetable oil, response surface methodology was applied to determine the effects of five level-four factors and their reciprocal interactions on removal of free fatty acid. A total of 30 individual experiments were performed, which were designed to study reaction temperature, reaction time, catalyst amount and methanol amount. A statistical model predicted that the highest removal yield of free fatty acid was 99.8%, at the following optimized reaction conditions: a reaction temperature of 64.99$^{\circ}C$, a reaction time of 36.20 mins., an catalyst amount of 13.01% (w/v), and a methanol amount of 15% (v/v). Using these optimal factor values under experimental conditions in three independent replicates, the average removal yield was well within the value predicted by the model.

  • PDF

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun;Li, Bao-Lin;Zheng, Yan-Jun;Wang, Wen-Ying
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2961-2965
    • /
    • 2012
  • Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

DP 가공된 레이온 직물의 포름알데하이드 방출에 관한 연구 (A Study on the Formaldehyde Release from Durable Press Finished Rayon Fabrics)

  • 여숙영;김은애
    • 한국의류학회지
    • /
    • 제13권1호
    • /
    • pp.59-66
    • /
    • 1989
  • This paper is concerned with formaldehyde release from durable press finished rayon fabrics. $100\%$ rayon fabrics were treated with 3 kinds of commercial N-methylol crosslinking agents using a pad-dry cure technique. Aqueous extractions of fabric samples were carried out at $40^{\circ}C$ under pH's of 4, 7, 10. Formaldehyde release was evaluated for the types of resins, catalyst concentrations and extraction conditions. Results indicated that the higher concentration of catalyst leads to the more fixation of resin on the fabric. Total formaldehyde released to the extract was decreased as the catalyst concentration increased. For the resin types, the amount of formaldehyde released was in the order of DMU>MDMDHEU>DMDHEU. Free formaldehyde content in the extract was in the order of pH10>pH4>pH7. This result proved that resins are least resistant to alkaline hydrolysis and the N-C bond cleavage under alkaline condition. Under acidic condition, however, N-methylol formaldehyde was accumulated before the release of free formaldehyde. This suggested the C·0 bond cleavalge to form carbonium - immonim intermediate.

  • PDF

Mechanism of Lipid Peroxidation in Meat and Meat Products -A Review

  • Min, B.;Ahn, D.U.
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.152-163
    • /
    • 2005
  • Lipid peroxidation is a primary cause of quality deterioration in meat and meat products. Free radical chain reaction is the mechanism of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the major initiators of the chain reaction. Lipid peroxyl radical and alkoxyl radical formed from the initial reactions are also capable of abstracting a hydrogen atom from lipid molecules to initiate the chain reaction and propagating the chain reaction. Much attention has been paid to the role of iron as a primary catalyst of lipid peroxidation. Especially, heme proteins such as myoglobin and hemoglobin and "free" iron have been regarded as major catalysts for initiation, and iron-oxygen complexes (ferryl and perferryl radical) are even considered as initiators of lipid peroxidation in meat and meat products. Yet, which iron type and how iron is involved in lipid peroxidation in meat are still debatable. This review is focused on the potential roles of ROS and iron as primary initiators and a major catalyst, respectively, on the development of lipid peroxidation in meat and meat products. Effects of various other factors such as meat species, muscle type, fat content, oxygen availability, cooking, storage temperature, the presence of salt that affect lipid peroxidation in meat and meat products are also discussed.

Efficient, Rapid and Solvent-free Cyanosilylation of Aldehydes and Ketones Catalyzed by SbCl3

  • Pourmousavi, S.A.;Salahshornia, H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1575-1578
    • /
    • 2011
  • Antimony trichloride (SbCl3) was demonstrated to be an effective catalyst for the cyanosilylation of a wide variety of carbonyl compounds under solvent-free conditions. The reactions proceeded smoothly at room temperature to afford the corresponding cyanosilylethers in good to excellent yields.

An Organocatalyzed and Ultrasound Accelerated Expeditious Synthetic Route to 1,5-Benzodiazepines under Solvent-Free Conditions

  • Shinde, Pravin V.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1179-1182
    • /
    • 2011
  • In the present work, successful implementation of ultrasound irradiations for the rapid synthesis of 1,5-benzodiazepine derivatives under solvent-free conditions is demonstrated. Use of a novel catalyst i.e. camphor sulphonic acid in combination with ultrasound technique is reported for the first time. Comparative study for the synthesis of 1,5-benzodiazepines using conventional as well as ultrasonication method is discussed.

Solvent-Free Synthesis of Some1-Acetyl Pyrazoles

  • Thirunarayanan, Ganesamoorthy;Sekar, Krishnamoorthy Guna
    • 대한화학회지
    • /
    • 제57권5호
    • /
    • pp.599-605
    • /
    • 2013
  • Some N-acetyl pyrazoles including 1-(3-(3,4-dichlorophenyl)-5-(substituted phenyl)-4,5-dihydro-$^1H$-pyrazole- 1-yl) ethanones have been synthesised by solvent free cyclization cum acetylation of chalcones like substituted styryl 3,4- dichlorophenyl ketones using hydrazine hydrate and acetic anhydride in presence of catalytic amount of fly-ash: $H_2SO_4$ catalyst. The yield of these N-acetyl pyrazole derivatives are more than 75%. The synthesised N-acetyl pyrazoline derivatives were characterized by their physical constants and spectral data.