Browse > Article
http://dx.doi.org/10.5012/bkcs.2008.29.2.389

Synthesis of High Purity Carbon Nano Fibers and Hydrogen from Propane Decomposition  

Hussain, S.Tajammul (Centre for Nano Science and Technology, National Centre for Physics)
Gul, Sheraz (Centre for Nano Science and Technology, National Centre for Physics)
Mazhar, M. (Department of Chemistry, Quaid-i-Azam University)
Larachi, Faical (Department of Chemical Engineering, University of Laval)
Publication Information
Abstract
High purity carbon nano fibers/tubes (CNF/Ts) which contain 97% pure graphitic carbon are prepared by a new catalytic method. These carbon nano fibers/tubes are ready to use without any further purification. The striking feature of this method is the production of carbon nano fibers/tubes of narrow distribution range. The developed catalytic method also produces pure hydrogen. An additional advantage of this catalytic method is that catalyst can be reused without reactivation. Ni:Cu catalyst system is embodied into SCHOTT-DURAN filter disc of large pore size (40-100 mm). Due to the production of hydrogen in the reaction catalyst stability is enhanced and deactivation process is considerably slowed down.
Keywords
Propane decomposition; Supported catalyst; Nanocarbons; COx free hydrogen
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Amelinckx, S.; Bernaerts, D.; Zhang, X. B.; Van Tendeloo, G.; Van Landuyt, J. Science 1995, 267, 1334   DOI   ScienceOn
2 Journet, C.; Bernier, P. Appl. Phys. A-Mater. Sci. Process. 1998, 67, 1   DOI   ScienceOn
3 Pham-Huu, C.; Keller, N.; Roddatis, V. V.; Mestl, G.; Schlogl, R.; Ledoux, M. J. J. Phys. Chem. Chem. Phys. 2002, 4, 514   DOI   ScienceOn
4 Zhu, W. Z.; Miser, D. E.; Chan, W. G.; Hajaligol, M. R. Mater. Chem. Phys. 2003, 82, 638   DOI   ScienceOn
5 Jeong, G.; Yamazaki, A.; Suzuki, S.; Yoshimura, H.; Kobayashi, Y.; Homma, Y. J. Am. Chem. Soc. 2005, 127, 8238   DOI   ScienceOn
6 Han, S.; Yu, T.; Park, J.; Koo, B.; Joo, J.; Hyeon, T.; Hong, S.; Im, J. J. Phys. Chem. B 2004, 108, 8091   DOI   ScienceOn
7 Li, Y.; Kim, W.; Zhang, Y.; Rolandi, M.; Wang, D.; Dai, H. J. Phys. Chem. B 2001, 105, 11424   DOI   ScienceOn
8 Cheung, C. L.; Kurtz, A.; Park, H.; Lieber, C. M. J. Phys. Chem. B 2002, 106, 2429   DOI   ScienceOn
9 Cheng, H.; Cooper, A. C.; Pez, G. P.; Kostov, M. K.; Piotrowski, P.; Stuart, S. J. J. Phys. Chem. B 2005, 109, 3780   DOI   ScienceOn
10 Choi, H. C.; Kim, W.; Wang, D.; Dai, H. J. Phys. Chem. B 2002, 106, 12361   DOI   ScienceOn
11 Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377   DOI   ScienceOn
12 An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. J. Am. Chem. Soc. 2002, 124, 13688   DOI   ScienceOn
13 Javey, A.; Dai, H. J. Am. Chem. Soc. 2005, 127, 11942   DOI   ScienceOn
14 Sugai, T.; Yoshida, H.; Shimada, T.; Okazaki, T.; Shinohara, H.; Bandow, S. Nano Lett. 2003, 3, 769   DOI   ScienceOn
15 Flahaut, E.; Bacsa, R.; Peigney, A.; Laurent, C. Chem. Commun. 2003, 1442
16 Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y. A.; Terrones, M.; Dresselhaus, M. S. Nature 2005, 433, 476   DOI   ScienceOn
17 Hamada, N.; Sawada, S. I.; Oshiyama, A. Phys. Rev. Lett. 1992, 68, 1579   DOI   ScienceOn
18 Wang, Y.; Shah, N.; Huffman, G. P. Catal. Today 2005, 99, 359   DOI   ScienceOn
19 Shah, N.; Wang, Y.; Panjala, D.; Huffman, G. P. Energy & Fuels 2004, 18, 727   DOI   ScienceOn
20 Jeong, H. J.; An, K. H.; Lim, S. C.; Park, M.; Chang, J.; Park, S.; Eum, S. J.; Yang, C. W.; Park, C.; Lee, Y. H. Chem. Phys. Lett. 2003, 380, 263   DOI   ScienceOn
21 Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Appl. Phys. Lett. 1992, 60, 2204   DOI
22 Fu, Q.; Huang, S.; Liu, J. J. Phys. Chem. B 2004, 108, 6124   DOI   ScienceOn