• 제목/요약/키워드: Catalyst-free

검색결과 269건 처리시간 0.026초

유동층 반응기에서 N330 카본 블랙 촉매를 이용한 프로판을 포함한 메탄의 촉매분해에 의한 수소 제조 (Hydrogen production by catalytic decomposition of propane-containing methane over N330 carbon black in a fluidized bed)

  • 이승철;이강인;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.761-764
    • /
    • 2009
  • The thermocatalytic decomposition of methane is an environmentally attractive approach to $CO_2$-free production of hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbon from the reactor. The usage of carbon black was reported as stable catalyst for decomposition of methane. Therfore, carbon black (DCC-N330) is used as catalyst. A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was selected for the thermo-catalytic decomposition. The porpane-containg methnae decomposition reaction was operated at the temperature range of 850-900 $^{\circ}C$ methane gas velocity of 1.0 $U_{mf}$ and the operating pressure of 1.0 atm. In this work, propane was added as reactant to make methane conversion higher. Therefore we compared with methane conversion and pre-experiment methane conversion that using only methane as reactant. The carbon black, after experiment, was measured in particle size and surface area and analyzed surface of the carbon black by TEM.

  • PDF

가압유동층 반응기에서 카본블랙 촉매를 이용한 메탄의 촉매분해에 의한 수소제조 (Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed on pressurized bench-scale condition)

  • 서형재;이승철;이강인;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.791-793
    • /
    • 2009
  • Hydrogen has been recognized of the energy source for the future, in terms of the most environmentally acceptable energy source. A pressurized fluidized bed reactor made of carbon steel with 0.076 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce amount of $CO_2$ - free hydrogen with validity from a commercial point of view. The fluidized bed was proposed for withdrawing of product carbons from the reactor continuously. The methane decomposition rate with the carbon black N330 catalyst was rapidly reached a quasi-steady state and remained for several hour. The methane thermocatalytic decomposition reaction was carried out at the temperature range of 850 - 950 $^{\circ}C$, methane gas velocity of 2.0 $U_{mf}$ and the operating pressure of 1.0 -3.0 bar. Effect of operating parameters such as reaction temperature, pressure on the reaction rates was investigated and predicted the effect of a change in conditions on a chemical equilibrium thermodynamically, according to Le Chatelier's principle.

  • PDF

카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed)

  • 이승철;윤용희;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.57-60
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_{2}$ - free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed)

  • 남우석;정재욱;윤기준;이동현;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.388-391
    • /
    • 2006
  • A fluidized bed reactor made of quartz with 0.055m I.D. and 1.0m in height was employed for the thermocatalytic decomposition of propane to produce $CO_2-free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor The propane decomposition rate used carbon black DCC-N330, Hi-900L as a catalyst. The propane decomposition reaction was carried out at the temperature range of $600-800^{\circ}C$, propane gas velocity of $1.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature on the reaction rates was investigated. Resulting production in our experiment were not only hydrogen but also several by products such as methane, ethylene, ethane, and propylene.

  • PDF

Carbon nanospheres synthesized via solution combustion method: their application as an anode material and catalyst for hydrogen production

  • Dhand, Vivek;Rao, M. Venkateswer;Prasad, J.S.;Mittal, Garima;Rhee, Kyong Yop;Kim, Hyeon Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.198-202
    • /
    • 2014
  • Amorphous agglomerates of carbon nanospheres (CNS) with a diameter range of 10-50 nm were synthesized using the solution combustion method. High-resolution transmission electron microscopy (HRTEM) revealed a densely packed high surface area of $SP^2$-hybridized carbon; however, there were no crystalline structural components, as can be seen from the scanning electron microscopy, HRTEM, X-ray diffraction, Raman spectroscopy, and thermal gravimetric analyses. Electrochemical and thermo catalytic decomposition study results show that the material can be used as a potential electrode candidate for the fabrication of energy storage devices and also for the production of free hydrogen if such devices are used in a fluidized bed reactor loaded with the as-prepared CNS as the catalyst bed.

이종 원자 도핑 탄소 나노재료를 이용한 PEMFC Cathode용 촉매 합성 및 평가 (Heteroatom-doped carbon nanostructures as non-precious cathode catalysts for PEMFC)

  • 조가영;상가라주 샨무감
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.406-409
    • /
    • 2012
  • Recently, enormous research efforts have been focused on the development of non-precious catalysts to replace Pt for electrocatalytic oxygen reduction reaction (ORR), and to reduce the cost of proton exchange membrane fuel cells (PEMFCs). In recent years, heteroatom (N, B, and P) doped carbon nanostructures have been received enormous importance as a non-precious electrode materials for oxygen reduction. Doping of foreign atom into carbon is able to modify electronic properties of carbon materials. In this study, nitrogen and boron doped carbon nanostructures were synthesized by using a facile and cost-effective thermal annealing route and prepared nanostructures were used as a non-precious electrocatalysts for the ORR in alkaline electrolyte. The nitrogen doped carbon nanocapsules (NCNCs) exhibited higher activity than that of a commercial Pt/C catalyst, excellent stability and resistance to methanol oxidation. The boron-doped carbon nanostructure (BC) prepared at $900^{\circ}C$ showed higher ORR activity than BCs prepared lower temperature (800, $700^{\circ}C$). The heteroatom doped carbon nanomaterials could be promising candidates as a metal-free catalysts for ORR in the PEMFCs.

  • PDF

카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed)

  • 이승철;윤용희;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2$ - free hydrogen . The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by TEM image.

  • PDF

Microwave Assisted Energy Efficient Biodiesel Production from Crude Pongamia pinnata (L.) Oil Using Homogeneous Catalyst

  • Kumar, Ritesh;Sethy, A.K.
    • Journal of Forest and Environmental Science
    • /
    • 제31권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Microwave assisted biodiesel production from crude Pongamia pinnata oil using homogeneous base catalyst (KOH) was unsuccessful because of considerable soap formation. Therefore, a two step process of biodiesel production from high free fatty acid (FFA) oil was investigated. In first step, crude P. pinnata oil was acid catalyzed using $H_2SO_4$ and acid value of oil was reduced to less than 4 mg KOH/g. Effect of sulfuric acid concentration, alcohol-oil molar ratio and microwave irradiation time on acid value of oil was studied. Result suggested that 1.5% $H_2SO_4$ (w/w), 6:1 methanol oil molar ratio and 3 min microwave irradiation time was sufficient to reduce the acid value of oil from 12 and 22 mg KOH/g to 2.9 and 3.9 mg/KOH/g, respectively. Oil obtained after pretreatment was subsequently used for microwave assisted alkali catalyzed transesterification. A higher biodiesel yield (99.0%) was achieved by adopting two step processes. Microwave energy efficiency during alkali catalyzed transesterification was also investigated. The results suggested a significant energy saving because of reduced reaction time under microwave heating.

바이오디젤 공정기술과 연료특성 (Biodiesel Production Technology and Its Fuel Properties)

  • 홍연기;홍원희
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.424-432
    • /
    • 2007
  • 바이오디젤은 식물유지 및 동물유지와 같은 재생 가능한 자원으로부터 얻어지는 친환경 대체에너지로서 주목받고 있다. 바이오디젤은 식물유지 또는 동물성 지방으로부터 얻어지는 긴사슬 지방산의 모노알킬에스터이다. 본 총설에서는 (1) 바이오디젤을 얻기위한 전이에스테로화 반응에 대한 촉매의 타입, 자유지방산 및 수분, 알콜과 유지의 반응비, 알콜타입, 반응온도 및 시간과 교반강도의 영향, (2) 전이에스테르화 이후의 바이오디젤에 대한 분리공정, 그리고 (3) 대체에너지로서 바이오디젤의 내연기관 적합성을 바이오디젤의 물성에 기초하여 소개한다.

고순도 1,4-솔비탄을 이용한 비이온 솔비탄 모노스테아르산 합성 (Synthesis of Nonionic Sorbitan Monostearate Using High Purity 1,4-sorbitan)

  • 류화열;주창식;문부현;김영석;이주동;이만식
    • 한국표면공학회지
    • /
    • 제41권2호
    • /
    • pp.51-56
    • /
    • 2008
  • Nonionic sorbitan monostearate have been successfully prepared by esterification using 1,4-sorbitan and stearic acid. 1,4-sorbitan were prepared using D-sorbitol and acid catalyst at solvent-free conditions. The synthesized surfactants were characterized by NMR and FT-IR. We also investigated the effect of temperature, pressure and catalyst on the synthesis of nonionic sorbitan monostearate. The yields of 1,4-sorbitan were 90% at $160^{\circ}C$ under 160 mmHg vacuum, and the yields of nonionic sorbitan monostearate were 92% at $230^{\circ}C$ under 60 mmHg vacuum.