• Title/Summary/Keyword: Catalyst recycling

Search Result 124, Processing Time 0.017 seconds

Decomposition of Sulfamethoxazole by Catalytic Wet Peroxide Oxidation (촉매습식과산화(CWPO)를 이용한 설파메톡사졸의 분해)

  • Kim, Dul Sun;Lee, Dong-Keun;Kim, Jin Sol
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.293-300
    • /
    • 2018
  • Sulfamethoxazole (SMX) is sulfaamide-based synthetic antibiotics, which are widely prescribed pharmaceutical compound to treat bacterial infections in both human and animals. Most of them are not completely decomposed as refractory substances. The environmental impact of pharmaceuticals as emerging contaminants has generated severe concerns. In this study, catalytic wet peroxide oxidation (CWPO) of SMX was carried out with $Cu/Al_2O_3$ catalyst and investigated the optimum reaction conditions of temperature, dosage of catalyst and concentration of $H_2O_2$ to completely decompose the SMX. It was observed that SMX was completely decomposed within 20 min using 0.79 mM $H_2O_2$ and 6 g $Cu/Al_2O_3$ catalyst at 1 atm and $40^{\circ}C$, but SMX was not fully mineralized and converted to intermediates as hydroylated-SMX, sulfanilic acid, 4-aminobenzenesulfinic acid and nitrobenzene. After that these are completely mineralized through organic acid. We proposed the decomposition reaction path ways of SMX by analyzing the behavior of these intermediates. To investigate the durability of heterogeneous catalyst, decomposition of SMX was observed by continuously recycling catalysts. When the heterogeneous catalyst of 10 wt% $Cu/Al_2O_3$ was continuously reused 5 times, decomposition of SMX was a little lowered, but the activity of catalyst was overall very stable.

Catalytic Wet Gasification of Biomass Mixed Fuels (바이오메스 혼합연료의 습윤 촉매 가스화 연구)

  • Kang, Sung-Kyu;Lee, Seung-Jae;Ryu, In-Soo;Hur, Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.59-72
    • /
    • 2009
  • In order to utilize sewage sludge as a heat source of energy, it goes without saying that the fuel should be clean and pose no threat to the environment. As a consequent, it should not contain even minute quantities of heavy metals / impurities. The SOCA (Sludge-Oil-Coal- Agglomerates) fuel can meet all these requirements. SOCA being a solid fuel can be gasified for the production of clean energy. Wet catalytic gasification is the most appropriate process for SOCA containing nearly 60% water. It is important to note that the SOCA thus obtained inherits ca. 40~50% of sulfur from the coal used. It can poison the catalyst during catalytic gasification process. Consequently, it becomes important to choose a proper catalyst for the gasification. Calcium was found to be ideal choice as a catalyst for the gasification of SOCA. The optimal gasification was performed at $850^{\circ}C$ with water vapor. The role of fuel-N is of utmost importance in the gasification of SOCA. The gasification should be controlled to reduce the production of HCN to a minimum and enhance its conversion to $N_2$ and/or $NH_3$.

  • PDF

Recovery of Platinum Group Metals from the Leach Solution of Spent Automotive Catalysts by Cementation (자동차(自動車) 폐촉매(廢觸媒)의 침출액(浸出液)으로부터 시멘테이션에 의한 백금족(白金族) 금속(金屬)의 회수(回收))

  • Kim, Min-Seuk;Kim, Byung-Su;Kim, Eun-Young;Kim, Soo-Kyung;Ryu, Jae-Wook;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.36-45
    • /
    • 2011
  • The recovery of platinum group metals (PGMs) from the leach solution of spent auto-catalyst and the wash solution of the leach residue was investigated in the laboratory scale experiments by the cementation process using metal powders as the reductant. In this study, the effect of Al, Mg and Zn powders on the cementation process was particularly examined. Aluminum powder was selected as the most suitable reductant for the cementation of PGMs. At the cementation time of 10 minute under the aluminium stoichimetric amount of 19.3 and the reaction temperature of $50{\sim}60^{\circ}C$, the recovery of platinum group metals from the leach solution of the spent auto-catalyst was found to be 99.3%, 99.4%, 90.2% for Pt, Pd and Rh, respectively. Under the same conditions with the aluminium stoichimetric amount of 45, the recovery of platinum group metals from the wash solution of the leach residue of spent catalyst was observed to be 97%, 97% and 90% for Pt, Pd and Rh, respectively. In addition, it was possible to upgrade the platinum group metals in the precipitates obtained from the cementation process by about 10% through the removal of metal impurities by the nitric acid leaching at ambient temperature.

Separation Behavior of Vanadium and Tungsten from the Spent SCR DeNOX Catalyst by Strong Basic Anion Exchange Resin (SCR 탈질 폐촉매로부터 강염기성 음이온교환수지를 이용한 바나듐/텅스텐 분리거동 고찰)

  • Heo, Seo-Jin;Jeon, Jong-Hyuk;Kim, Chul-Joo;Chung, Kueong-Woo;Jeon, Ho-Seok;Yoon, Do-Young;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.38-47
    • /
    • 2020
  • In this study, factors affecting the adsorption reaction for the separation/recovery of V and W using Lewatit monoplus MP 600, a strong basic anion exchange resin, from the leachate obtained through the soda roasting-water leaching process from the spent SCR DeNOX catalyst investigated and the adsorption mechanism was discussed based on the results. In the case of the mixed solution of V and W, both ions showed a high adsorption ratio at pH 2-6, but the adsorption of W was greatly reduced at pH 8. In the adsorption isothermal experiment, both V and W were fitted well at the Langmuir adsorption isotherm, and the reaction kinetics were fitted well at pseudo-second-order. As a result of conducting an adsorption experiment by adjusting the pH with H2SO4 to remove Si, which inhibits the adsorption of V and W from the leachate, the lowest W adsorption ratio was shown at pH 8.5. Desorption of W was hardly achieved in strongly acidic solutions, and desorption of V was well performed in both strongly acidic and strongly basic solutions.

Preparation and Characterization of Porous Catalyst for Formaldehyde Removal using Domestic Low-grade Silica (국내산 저품위 실리카를 이용한 포름알데히드 제거용 다공성 촉매의 제조 및 특성)

  • Han, Yosep;Jeon, Ho-Seok;Kim, Seongmin
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2021
  • This study investigated formaldehyde (HCHO) removal by preparing porous supports using domestic low-grade silica coated with Co-ZSM5 and Cu-ZSM5 as the catalysts. First, the sample of the raw material for the support contained 90% silica with quartz crystal phase, which was confirmed as low-grade silica. According to Energy-dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FT-IR) analyses, the catalysts, Co-ZSM5 and Cu-ZSM5, were successfully coated on the surface of the porous silica supports. During the removal test of HCHO using the prepared Co-ZSM5 and Cu-ZSM5 coated beads, depending on the reaction temperature, the Co-ZSM5 coated beads exhibited higher removal efficiencies (>97%) than the Cu-ZSM5 beads at 200 ℃. The higher efficiency of the Co-ZSM5 coating may be attributed to its superior surface activity properties (BET surface area and pore volume) that lead to the favorable HCHO decomposition. Therefore, Co-ZSM5 was determined to be the suitable catalyst for removing HCHO as a coating on a porous support fabricated using domestic low-grade silica.

Reviews on Adsorption and Catalyst Technology for Removal of Hazardous Substances from Semiconductor Process (반도체 공정에서 발생하는 유해물질 제거를 위한 흡착 및 촉매 공정에 대한 고찰)

  • Yoon, Seong-Jin;Kim, Yu-Jin;Kang, Yu-Jin;Jang, Min-Hyeok;Jo, Hyung-Kun;Han, Gyoung-Jae;Seo, Dong-Jin;Cho, Hye-Ryeong;Park, Joo-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.51-57
    • /
    • 2022
  • This paper investigated catalytic and adsorption equations among the technologies for removing hazardous substances generated in the semiconductor process. As the semiconductor industry develops, harmful substances used and discharged in the semiconductor process are also increasing. Hazardous substances adversely affect the global environment in terms of atmospheric and water quality. As regulations on the emission of harmful substances are strengthened in the 21st century, it is expected that there will be limitations in industrial development in the future. Therefore, technology for removing harmful substances generated in semiconductor processes is essential. In this paper, the goal is to remove PFCs, which are harmful substances, through adsorption technology and catalyst technology. Descriptions from the semiconductor process to the technology in which harmful substances generated are removed were summarized.

Valorizing Cattle Manure to Syngas via Catalytic Pyrolysis with CO2 (이산화탄소-촉매 열분해 활용 우분 유래 합성가스 증대 연구)

  • Lee, Dong-Jun;Jung, Jong-Min;Kim, Jung Kon;Lee, Dong-Hyun;Kim, Hyunjong;Park, Young-Kwon;Kwon, Eilhann E.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.141-150
    • /
    • 2022
  • To abate the environmental burden derived from the massive generation of cattle manure (CM), pyrolysis of CM was suggested as one of the methods for manure treatment. In respect of carbon utilization, pyrolysis has an advantage in that it can produce usable carbon-based chemicals. This study was conducted to investigate a syngas production from pyrolysis of CM in CO2 condition. In addition, mechanistic functionality of CO2 in CM pyrolysis was investigated. It was found that the formation of CO was enhanced at ≥ 600 ℃ in CO2 environment, which was attribute to the homogeneous reactions between CO2 and volatile matters (VMs). To expedite reaction kinetics for syngas production during CM pyrolysis, Catalytic pyrolysis was carried out using Co/SiO2 as a catalyst. The synergistic effects of CO2 and catalyst accelerate the formation of H2 and CO at entire temperature range. Thus, this result offers that CO2 could be a viable option for syngas production with the mitigation of greenhouse gas.

A Study on Reusing of Electroless Ni-Cu-P Waste Solution (無電解 Ni-Cu-P 廢 도금액의 재사용에 관한 연구)

  • 오이식
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 2001
  • Reusing of electroless Ni-Cu-P waste solution was investigated in the plating time, plating rate, solution composion and deposit. Plating time of nickel-catalytic surface took longer than that of zincated-catalytic surface. Initial solution with 50f) waste solution additive at batch type was possible to reusing of waste solution. Plating time of initial solution at continuous type took longer 10 times over than that of batch type. Plating time of 50% waste solution additive at continuous type took longer 3.7 times over than that of batch type. Component change of nickel-copper for electroless deposition was greatly affected by depolited inferiority and larger decreased plating rate.

  • PDF

Application of Enzymatic Hydrolysis for the Yield Optimization in Froth-Flotation of ONP

  • Ryu, Jeong-Yong;Song, Bong-Keun;Song, Jae-Kwang
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.129-136
    • /
    • 2006
  • Although cleaner and cheaper deinking of ONP could be performed at the neutral or low alkaline condition excessive loss from froth-flotation is unavoidable and so reduction of alkali or caustic soda dosage sacrifices recycling yield. Now the new trade-off regarding alkali dosage versus flotation yield is urgently required in order to set the optimized neutral or low alkaline deinking process of ONP. Lipase from Thermomyces Lanuginosus has an effect on desizing and deacetylation reaction and it could be applied to the stock of pre flotation secondary stage in order to reduce the flotation reject without the sacrifice of optical properties of flotation accepts. Instead of inorganic base, lipase could be applied as a biochemical catalyst for the selective modification of valuable hydrophobic particles in deinking stock, for example cellulose fines and inorganic fillers covered by hydrophobic additives or contaminants. When the enzymatic hydrolysis of ester bond could be made on the surface of hydrophobic particulates, unwanted float of fine particles could be prevented. Now the enhancement of flotation selectivity or the modification of the hydrophobicity of deinking stock is expected to be promoted by the enzymatic pre treatment. And the reduction of recycling cost with the saves of raw material, recovered paper would be possible as a result.

  • PDF

Elution of Plasticizer fvom PVC Sheet in Alkaline Solutions (알카리수용액중에서 PVC Sheet로부터 가소제의 추출)

  • 신선명;전석호;한오형
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.14-19
    • /
    • 2002
  • PVC sheet was treated in O~10M NaOH solutions at $80~150^{\circ}C$ for O~7 hour, in order to study the leaching phenomena of plasticizer. The yield of phthalic acid produced by hydrolysis of DOP was increased greatly with increasing temperature and NaOH concentration by accelerating of alkali catalyst. The yield of phthalic acid was reached ca. 100% in 10M NaOH at $150^{\circ}C$ over 3 hours. Therefore, the plasticizer containing 30% in PVC sheet could be hydrolyzed in alkali solutions before the occurrence of dehydrochlorination. Besides, in the thermal reaction, the pores were produced in the PVCsheet by the hydrolysis of DOP.