• Title/Summary/Keyword: Catalyst reaction

Search Result 2,148, Processing Time 0.028 seconds

THE CATALYTICALLY SUPPORTED COMBUSTOR FOR LEAN MIXTURE (촉매에 의해 안정화된 희박 예혼합기의 연소)

  • Seo, Yong-Seok;Gang, Seong-Gyu;Sin, Hyeon-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.59-67
    • /
    • 1998
  • The aim of this study is to investigate advantages that the catalytically supported combustor can have. For this purpose, the catalytic combustor was prepared which consisted of the catalyst bed and the thermal combustor at the downstream of the catalyst bed. The catalyst bed consisted of two-stage. Pd catalyst was installed in the first stage of the catalyst bed, and Pt catalyst was placed in the second stage. Results showed that the catalytically supported combustion had some advantages. One was that auto-ignition occurred in the thermal combustor. This can give merit that an igniter is not necessary to start flame ignition. Other was that the catalytically supported combustion was stable for lean mixture. When combustion of lean mixture was not supported by surface reaction it became unstable so that big combustion noise was created. Therefore, it is desirable to support flame by catalytic surface reaction to obtain the stable combustion of lean mixture.

  • PDF

Bleaching of Kraft Bagasse Pulp in Presence of Polyoxometalate Catalyst

  • Ibrahim A. A.;El-Sakhawy Mohamed;Kamel Samir
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.5 s.113
    • /
    • pp.56-62
    • /
    • 2005
  • The catalytic effect of molybdovandophosphate heteropolyanion (HPAs) on the delignification of kraft bagasse pulp by hydrogen peroxide has been investigated. Very small amounts of the catalyst (0.05 0.3 mM/l) gave convenient results. Partial reduction of the catalyst was also studied. The effect of reaction medium (water, ethyl alcohol and acetone) on the bleaching was also studied. The results obtained show that the optimum condition for bleaching in presence of polyoxometalate were 0.05 mM/l catalyst concentration at $70^{\circ}C$ reaction temperature and $7\%$ consistency at pH 2 in aqueous medium. The ratio of water to solvent of 60:40 from acetone gives higher brightness than ethyl alcohol. The catalyst solution can be reused for 5 times without any reduction in brightness. ESR for the blank and exhausted solutions under different conditions was also carried out to find the relation between reduced metals and pulp brightness.

Synthesis of Styrenated Phenol Alkoxylate from Styrenated Phenol with Ethylene Carbonate over KOH/La2O3 Catalyst (KOH/La2O3 촉매상에서 Styrenated Phenol과 Ethylene Carbonate의 반응으로부터 Styrenated Phenol Alkoxylate의 합성)

  • Lee, Seungmin;Son, Seokhwan;Jung, Sunghun;Kwak, Wonbong;Shin, Eun Ju;Ahn, Hogeun;Chung, Minchul
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.62-66
    • /
    • 2018
  • Styrenated phenol alkoxylates (SP-A) were prepared from styrenated phenol (SP) and ethylene oxide (EO) under a homogeneous base catalyst. However, to use EO that is difficult to handle, a high-pressure reaction device capable of controlling the reaction process should be used. Additionally, when a homogeneous base catalyst is used, a neutralization process is required to remove residual bases after the reaction, and it is also difficult to separate the catalyst and the product. Therefore, in this study, we report the results of SP-A prepared from the reaction of SP and EC using only heterogeneous base catalysts. The heterogeneous base catalyst was obtained by supporting KOH on $La_2O_3$ and calcintion. Using EC instead of EO, it was possible to produce SP-A under the atmospheric rather than high-pressure reaction condition. Average molecular weights of synthesized SP-A varied greatly depending on reaction conditions. The average molecular weight of SP-A prepared using the $KOH/La_2O_3$ catalyst could be controlled arbitrarily by controlling the reaction temperature and added catalyst and EC amounts.

Synthesis of Stigmastanol as a Serum Cholesterol-lowering substance Using Pd Catalyst (Pd 촉매를 이용한 혈청 콜레스테롤 저하제 Stigmastanol의 합성)

  • 김의용
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.76-81
    • /
    • 2001
  • Stigmastanol, a functional agent of cholesterol-lowering in humans, was synthesized from stigmasterol. To investigate the usability as a raw material, the contents of sterol in vegetable oils and extract of soybean chaff were analyzed. The total sterol contents showed high values of 213.7 and 209.8 mg/100g in corn and soybean oils respectively. The extract of soybean chaff has played a good role as a raw material with high sterol contents. The kinetics of hydrogenation of stigmasterol was studied using a 5% Pd/AC catalyst in the temperature range of 30~$60^{\circ}$C. Increasing temperature showed a prominent decrease in conversion. The optimum temperature was $40^{\circ}$C for high yield of stigmastanol. The effects of $H_2$ pressure, agitation speed, catalyst loading, and stigmasterol concentration on reaction rate profile were also examined. From the power law model analysis using the initial rates of reaction, the reaction order was calculated as 0.705 for stigmasterol concentration and 0.147 for hydrogen pressure.

  • PDF

An important factor for the water gas shift reaction activity of Cu-loaded cubic Ce0.8Zr0.2O2 catalysts

  • Jang, Won-Jun;Roh, Hyun-Seog;Jeong, Dae-Woon
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.339-344
    • /
    • 2018
  • The Cu loading of a cubic $Ce_{0.8}Zr_{0.2}O_2$-supported Cu catalyst was optimized for a single-stage water gas shift (WGS) reaction. The catalyst was prepared by a co-precipitation method, and the WGS reaction was performed at a gas hourly space velocity of $150,494h^{-1}$. The results revealed that an 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst exhibits excellent catalytic performance and 100% $CO_2$ selectivity ($X_{CO}=27%$ at $240^{\circ}C$ for 100 h). The high activity of 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst is attributed to the presence of abundant surface Cu atoms and the low activation energy of the resultant process.

Methanation with Variation of Temperature and Space Velocity on Ni Catalysts (니켈촉매를 이용한 온도 및 공간속도 변화에 따른 메탄화 반응 특성)

  • Kim, Sy-Hyun;Yoo, Young-Don;Ryu, Jae-Hong;Byun, Chang-Dae;Lim, Hyo-Jun;Kim, Hyung-Taek
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.30-40
    • /
    • 2010
  • Syngas from gasification of coal can be converted to SNG(Synthesis Natural Gas) through gas cleaning, water gas shift, $CO_2$ removal, and methanation. One of the key technologies involved in the production of SNG is the methanation process. In the methanation process, carbon oxide is converted into methane by reaction with hydrogen. Major factors of methanation are hydrogen-carbon oxide ratio, reaction temperature and space velocity. In order to understand the catalytic behavior, temperature programmed surface reaction (TPSR) experiments and reaction in a fixed bed reactor of carbon monoxide have been performed using two commercial catalyst with different Ni contents (Catalyst A, B). In case of catalyst A, CO conversion was over 99% at the temperature range of $350{\sim}420^{\circ}C$ and CO conversions and $CH_4$ selectivity were lower at the space condition over 3000 1/h. In case of catalyst B, CO conversion was 100% at the temperature over $370^{\circ}C$ and CO conversions and $CH_4$ selectivity were lower at the space condition over 4700 1/h. Also, conditions to satisfy $CH_4$ productivity over 500 ml/h.g-cat were over 2000 1/h of space velocity in case of catalyst A and over 2300 1/h of space velocity in case of catalyst B.

Catalytic Activity Tests in Gas-Liquid Interface over Cu-ZnO/Al2O3 Catalyst for High Pressure Water-Gas-Shift Reaction (고압 WGS 반응을 위한 Cu-ZnO/Al2O3 촉매상에서 기-액 계면 촉매 반응 특성 연구)

  • Kim, Se-Hun;Park, No-Kuk;Lee, Tae-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.905-912
    • /
    • 2011
  • In this study, the novel concept catalytic reactor was designed for water-gas shift reaction (WGS) under high pressure. The novel concept catalytic reactor was composed of an autoclave, the catalyst, and liquid water. Cu-ZnO/$Al_2O_3$ as the low temperature shift catalyst was used for WGS reaction. WGS in the novel concept catalytic reactor was carried out at the ranges of 150~$250^{\circ}C$ and 30~50 atm. The liquid water was filled at the bottom of the autoclave catalytic reactor and the catalyst of pellet type was located at the gas-liquid water interface. It was concluded that WGS reaction occurred over the surface of catalysts partially wetted with liquid water. The conversion of CO for WGS was also controlled with changing content of Cu and ZnO used as the catalytic active components. Meanwhile, the catalyst of honey comb type coated with Cu-ZnO/$Al_2O_3$ was used in order to increase the contact area between wet-surface of catalyst and the reactants of gas phase. It was confirmed from these experiments that $H_2$/CO ratio of the simulated coal gas increased from 0.5 to 0.8 by WGS at gas-liquid water interface over the wet surface of honey comb type catalyst at $250^{\circ}C$ and 50 atm.

CH4 Dry Reforming on Alumina-Supported Nickel Catalyst

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1149-1153
    • /
    • 2002
  • CH4/CO2 dry reforming was carried out to make syn gas on the Ni/Al2O3 catalysts calcined at different temperatures. The Ni/Al2O3 (850 $^{\circ}C)$ catalyst gave good activity and stability w hereas the Ni/Al2O3 $(450^{\circ}C)$ catalyst showed lower activity and stability. The NiO/Al2O3 catalyst calcined at $850^{\circ}C$ for 16 h (Ni/Al2O3 $(850^{\circ}C))$ formed the spinel structure of nickel aluminate, which was confirmed by TPR. The carbon formation rate on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was very low till 20 h, and then steeply increased with reaction time without decreasing the activity for CH4 reforming. The Ni/Al2O3 $(450^{\circ}C)$ catalyst showed high carbon formation rate at the initial reaction time and then, the rate nearly stopped with continuous decreasing the activity for CH4 reforming. Even though the amount of carbon deposition on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was higher than that on the Ni/Al2O3 $(450^{\circ}C)$ catalyst, the activity for CH4ing was also high, which could be attributed to the different type of the carbon formed on the catalyst surface.

Effects of $CO/CO_{2}$ Additives on The Reaction of Methane Activation using The Zeolite Catalyst (지오라이트 촉매를 이용한 메탄의 활성화 반응에서 일산화탄소/이산화탄소 첨가에 따른 영향)

  • Chung, Gui-Yung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.139-143
    • /
    • 2000
  • There appeared enhancements of the conversion of methane by adding a small amount of CO in the aromatization reaction of methane using the Mo-zeolite catalyst. In case of adding $CO_{2}$, $CO_{2}$ changed to CO first, and then the conversion reaction occurred. It was observed by using isotopes as reactants that CO is related to the aromatization reaction of methane.

Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor (Trickle Bed Reactor에서 Pt/Kieselguhr 촉매를 이용한 다환방향족 탄화수소 수소화 반응)

  • Seung Kyo, Oh;Seohyeon, Oh;Gi Bo, Han;Byunghun, Jeong;Jong-Ki, Jeon
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2022
  • The objective of this study is to prepare bead-type and pellet-type Pt (1 wt%)/Kieselguhr catalysts as hydrogenation catalysts for the polycyclic aromatic hydrocarbons (PAHs) included in pyrolysis fuel oil (PFO). The optimal reaction temperature to maximize the yield of saturated cyclic hydrocarbons during the PFO-cut hydrogenation reaction in a trickle bed reactor was determined to be 250 ℃. A hydrogen/PFO-cut flow rate ratio of 1800 was found to maximize 1-ring saturated cyclic compounds. The yield of saturated cyclic compound increased as the space velocity (LHSV) of PFO-cut decreased. The difference in hydrogenation reaction performance between the pellet catalyst and the bead catalyst was negligible. However, the catalyst impregnated by Pt after molding the Kieselguhr support (AI catalyst) showed higher hydrogenation activity than the catalyst molded after Pt impregnation on the Kieselguhr powder (BI catalyst), which was a common phenomenon in both the pellet catalysts and bead catalysts. This may be due to a higher number of active sites over the AI catalyst compared to the BI catalyst. It was confirmed that the pellet catalyst prepared by the AI method had the best reaction activity of the prepared catalysts in this study. The majority of the PFO-cut hydrogenation products were cyclic hydrocarbons ranging from C8 to C15, and C11 cyclic hydrocarbons had the highest distribution. It was confirmed that both a cracking reaction and hydrogenation occurred, which shifted the carbon number distribution towards light hydrocarbons.