• Title/Summary/Keyword: Catalyst reaction

Search Result 2,148, Processing Time 0.033 seconds

An Efficient and Green Approach for the Esterification of Aromatic Acids with Various Alcohols over H3PO4/TiO2-ZrO2

  • Kalbasi, Roozbeh Javad;Massah, Ahmad Reza;Barkhordari, Zeynab
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2361-2367
    • /
    • 2010
  • $TiO_2-ZrO_2$ was prepared with surfactant through a sol-gel method. Catalysts containing 5 - 35% $H_3PO_4$ were prepared using these oxides. Subsequently the catalytic performance of prepared catalysts was determined for liquid phase esterification of aromatic acids. $H_3PO_4/TiO_2-ZrO_2$ has been used as catalyst to synthesize various novel esters by esterification of some aromatic acids with aliphatic alcohols (2-propanol, 1-butanol, iso butanol, 3-pentanol, 1-hexanol, heptanol, cyclo heptanol, octanol and decanol). Under optimized conditions, maximum yields and selectivity (100%) to the corresponding ester, was obtained by using 25 wt % $H_3PO_4/TiO_2-ZrO_2$ as catalyst. The Catalyst can be easily recycled after reaction and can be reused without any significant loss of activity/selectivity performance. No by-product formation, high yields, short reaction times, mild reaction conditions, operational simplicity with reusability of the catalyst are the salient features of the present synthetic protocol. The reaction was carried out under solvent-free condition.

Catalyst Effects on Cross-linking of a Multi-Functional Fluoropolymer/Blocked-HMDI Blends (다기능성 함불소고분자/Blocked-HMDI 블렌드계의 가교화 반응에서의 촉매 영향)

  • Ahn, Won-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2408-2413
    • /
    • 2012
  • Effects of stanous catalyst on the cross-linking reaction characteristics of multi-functional fluoropolymer with blocked-hexamethylene diisocyanate(HMDI) were studied by dynamic DSC and non-isothermal thermogravimetric analysis (TGA). Results showed that cross-linking reaction occurred around $230-250^{\circ}C$ aftr the solvent and phenol, blocking agent, were removed upto the $150^{\circ}C$. It was considered that the reaction mechanism of the multi-functional fluoropolymer with HMDI might not be changed by the catalyst, however, the reaction rate became extremely faster upto to 100 times, showing the change of activation energy 81.8 kJ/mol for non-catalytic system to 61.7 kJ/mol for 1 phr catalytic system.

Characteristics of Hydrolysis Reaction Using Unsupported Catalyst at High Concentration of NaBH4 Solutions (고농도 NaBH4 수용액에서 비담지 촉매의 가수분해 반응 특성)

  • Lee, Hye-Ri;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.587-592
    • /
    • 2016
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-P-B Co-B, catalyst at high concentration $NaBH_4$ solution were studied. In order to enhance the hydrogen generation yield at high concentration of $NaBH_4$, the effect of catalyst type, $NaBH_4$ concentration and recovery of condensing water on the hydrogen yield were measured. The yield of hydrogen evolution increased as the boron ratio increased in preparation process of Co-P-B catalyst. The hydrogen yield decreased as the concentration increased from 20 wt% to 25 wt% in $NaBH_4$ solution during hydrolysis reaction using 1:5 Co-P-B catalyst. Maximum hydrogen yield of 96.4% obtained by recovery of condensing water and thinning of catalyst pack thickness in reactor using Co-P-B with Co-B catalyst and 25 wt% $NaBH_4$ solution.

Effect of Acetate Promotor on the Pd-Au/SiO2-catalyzed Synthesis of Vinyl Acetate from the Reaction of Ethylene with Acetic Acid (Pd-Au/SiO2 촉매에 의한 에틸렌과 아세트산으로부터 비닐 아세트산염의 생성반응에 대한 아세트산염의 촉진 효과)

  • Atashi, Hossein;Motahari, Kazem;Tabrizi, Farshad Farshchi;Sarkari, Majid;Fazlollahi, Farhad
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.92-97
    • /
    • 2011
  • The effect of Group I alkali acetate promoters on vinyl acetate (VA) synthesis was evaluated. Catalyst product selectivity and ethylene conversion are compared to the unpromoted catalyst in the fixed-bed reactor with oxidation reaction of ethylene and acetic acid in gaseous phase over Pd-Au/$SiO_2$ catalyst. It was found that: a) the promoters were stabilized on the catalyst surface, b) common effect for the alkali promoted Pd-Au catalysts increaseed in product selectivity and ethylene conversion compared to unpromoted catalyst (these effects increase from top to the bottom of Group I). These promoting effect is due to the common-ion effect of acetate, present in the reaction, resulting in an increase in the activity of the catalyst. In addition a complementary theory for the effect of Au in the structure of the catalyst is proposed the imposition of distribution of palladium particles through decreasing the particle's diameter.

Production of Methyl Ester from Coconut Oil using Microwave: Kinetic of Transesterification Reaction using Heterogeneous CaO Catalyst

  • Mahfud, Mahfud;Suryanto, Andi;Qadariyah, Lailatul;Suprapto, Suprapto;Kusuma, Heri Septya
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.275-280
    • /
    • 2018
  • Methyl ester derived from coconut oil is very interesting to study since it contains free-fatty acid with chemical structure of medium carbon chain ($C_{12}-C_{14}$), so the methyl ester obtained from its part can be a biodiesel and another partially into biokerosene. The use of heterogeneous catalysts in the production of methyl ester requires severe conditions (high pressure and high temperature), while at low temperature and atmospheric conditions, yield of methyl ester is relatively very low. By using microwave irradiation trans-esterification reaction with heterogeneous catalysts, it is expected to be much faster and can give higher yields. Therefore, we studied the production of methyl ester from coconut oil using CaO catalyst assisted by microwave. Our aim was to find a kinetic model of methyl ester production through a transesterification process from coconut oil assisted by microwave using heterogeneous CaO catalyst. The experimental apparatus consisted of a batch reactor placed in a microwave oven equipped with a condenser, stirrer and temperature controllers. Batch process was conducted at atmospheric pressure with a variation of CaO catalyst concentration (0.5; 1.0; 1.5; 2.0, 2.5%) and microwave power (100, 264 and 400 W). In general, the production process of methyl esters by heterogeneous catalyst will obtain three layers, wherein the first layer is the product of methyl ester, the second layer is glycerol and the third layer is the catalyst. The experimental results show that the yield of methyl ester increases along with the increase of microwave power, catalyst concentration and reaction time. Kinetic model of methyl ester production can be represented by the following equation: $-r_{TG}=1.7{\cdot}10^6{_e}{\frac{-43.86}{RT}}C_{TG}$.

Oxygen Removal Performance of M/γ-Al2O3 Catalyst through H2-O2 Recombination Reaction and the Effect of Oxygen Vacancies on the Catalyst (H2-O2 재결합 반응을 통한 M/γ-Al2O3 촉매의 산소 제거 성능과 산소 결손이 촉매에 미치는 영향)

  • TAEJUN KIM;PUTRAKUMAR BALLA;DAESEOB SHIN;YOUJUNG SONG;SUNGTAK KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.535-548
    • /
    • 2023
  • The intermittent nature of renewable energy is a challenge to overcome for safety and stable performance in water electrolysis systems linked to renewable energy. Oxygen removal using the catalyst is suitable for maintaining the oxygen concentration in hydrogen below the explosive level (4%) even in intermittent power supply. Metals such as Pd, Pt, and Ni are expected to be effective materials due to their hydrogen affinity. The oxygen removal performance was compared under high hydrogen concentration conditions by loading on γ-Al2O3 with high reactivity and large surface area. The characteristics of the catalyst before and after the reaction were analyzed through X-ray diffraction, transmission electron microscope, H2-temperature programmed reduction, X-ray photoelectron spectroscope, etc. The Pd catalyst that showed the best performance was able to lower 2% oxygen to less than 5 ppm. Changes in catalyst characteristics after the reaction indicate that oxygen vacancies are related to oxygen removal performance and catalyst deactivation.

A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H2O2 by Using Polyelectrolyte Multilayers (고분자 전해질 다층박막을 이용한 과산화수소 직접제조 반응 중 활성금속 용출 억제 방법)

  • Chung, Young-Min
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.262-268
    • /
    • 2015
  • In this study, two types of catalysts were prepared via conventional metal supporting method and encapsulation of metal nanoparticles in the polyelectrolyte multilayers constructed on support. The resulting catalysts were applied to the direct synthesis of hydrogen peroxide, and the effect of catalyst preparation method on the catalyst life as well as hydrogen peroxide productivity was investigated. The catalytic activity was strongly dependent upon the acid strength of support regardless of the catalyst preparation methods and HBEA (SAR=25) with strong acidity was superior to other supports to promote the reaction. In the case of metal supported catalyst, while hydrogen peroxide productivity was higher than that of polyelectrolyte multilayered counterpart, the reaction performance was sharply decreased during catalyst recycling due to the metal leaching. On the other hand, construction of polyelectrolyte multilayers on support weakened the influence of acid support on the reaction medium and therefore resulted in the decrease of catalytic activity and the increase of hydrogen peroxide decomposition as well. It is noted, however, that the catalytic activity was maintained after 5 recycles, which suggests that the introduction of polyelectrolyte multilayers on the support is very effective to suppress the unfavorable metal leaching phenomenon during a reaction.

Characteristics of methane reforming with carbon dioxide using transition metal catalyts (전이금속 촉매를 이용한 이산화탄소와 메탄의 개질 특성)

  • Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.644-650
    • /
    • 2021
  • This study characterized the reforming of methane with carbon dioxide, which is a major cause of global warming. The methane decomposition reaction with carbon dioxide was carried out using transition metal catalysts. The reactivity of tin was lower than that of a transition metal, such as nickel and iron. Most of the decomposition reaction occurred in the solid state. The melting point of tin is 505.03 K. Tin reacts in a liquid phase at the reaction temperature and has the advantage of separating carbon produced by the decomposition of methane from the liquid tin catalyst. Therefore, deactivation due to the deposition of carbon in the liquid tin can be prevented. Methane decomposition with carbon dioxide produced carbon monoxide and hydrogen. Ni was used to promote the catalyst performance and enhance the activity of the catalyst and lifetime. In this study, catalysts were synthesized using the excess wet impregnation method. The effect of the reaction temperature, space velocity was measured to calculate the activity of catalysts, such as the activation energy and regeneration of catalysts. The carbon-deposited tin catalyst regeneration temperature was 1023 K. The reactivity was improved using a nickel co-catalyst and a water supply.

Reaction Characteristics of WGS Catalyst for SEWGS Process in a Pressurized Fluidized Bed Reactor (가압 유동층 반응기에서 SEWGS 공정을 위한 WGS 촉매의 반응특성)

  • Kim, Ha-Na;Lee, Dong-Ho;Lee, Seung-Yong;Hwang, Taek-Sung;Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.337-345
    • /
    • 2012
  • To check effects of operating variables on reaction characteristics of WGS catalyst for SEWGS process, water gas shift reaction tests were carried out in a pressurized fluidized bed reactor using commercial WGS catalyst and sand(as a substitute for $CO_2$ absorbent) as bed materials. Simulated syngas(mixed with $N_2$) was used as a reactant gas. Operating temperature was $210^{\circ}C$ and operating pressure was 20 bar. WGS catalyst content, steam/CO ratio, gas velocity, and syngas concentration were considered as experimental variables. CO conversion increased as the catalyst content and steam/CO ratio increased. CO conversion at fluidized bed condition was higher than that of fixed bed condition. However, CO conversion were maintained almost same value within the fluidized bed condition. CO conversion decreased as the syngas concentration increased. The optimum operation condition was confirmed and long time water gas shift reaction test up to 24 hours at the optimum operating conditions was carried out.

Effects of Base Metal on the Partial Oxidation of Methane Reaction (메탄의 부분산화반응에 미치는 Base metal의 영향)

  • 오영삼;장보혁;백영순;이재의;목영일
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.256-264
    • /
    • 1999
  • The performance of the Pt-B/cordierite catalysts (2 wt%) Pt, 70 wt% Alumina, 28 wt%) Ceria and Zirconia, B: base metal) loaded with 6∼12 wt% Mn, Cu, V, Co, Cr and Ba, respectively was studied for partial oxidation of methane reaction and compared with that of Ni loaded catalyst. As a results, it was found that Ba, Co, Cr as well as Ni loaded catalysts showed higher activity for methane partial oxidation of methane than the Mn, Cu and V loaded catalyst. But it was known that catalysts having good activity for methane showed the good activity for coke formation, too. A XRD analysis of the catalyst before and after the reaction using 5 wt% Ni/Al$_2$O$_3$) showed that there were three Ni phases. In these results, it was found that methane oxidation reaction occulted at the front of the catalyst bed consisted of NiAl$_2$O$_4$and NiO and reforming reaction occurred at the rear part of the catalyst bed consisted of reduced Ni.

  • PDF