• Title/Summary/Keyword: Catalyst reaction

Search Result 2,142, Processing Time 0.029 seconds

Effects, of Catalyst Pore Structure on Reactivity in Simplified Reaction System

  • Rhee, Young-Woo;Son, Jae-Ek
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.114-122
    • /
    • 1993
  • A model describing the reaction rate and catalyst deactivation in a simplified reaction system was developed to investigate the significance of catalyst pore structure in terms of porosities, porosity ratios, and size ratios of reactants to pores. The model showed that the unimodal catalyst could give a better performance than the bimodal in certain circumstances and the crossover found in the reactivity curves resulted from a trade-off between surface area and diffusivity. Under the assumption of uniform coke buildup, the bimodal catalyst appeared to provide better resistance to deactation than unimodal catalyst.

  • PDF

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

Low-Temperature Thermal Decomposition of Industrial N-Hexane and Benzene Vapors (산업 발생 노르말헥산과 벤젠 증기의 저온 분해)

  • Jo Wan-Kuen;Lee Joon-Yeob;Kang Jung-Hwan;Shin Seung-Ho;Kwon Ki-Dong;Kim Mo-Geun
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.635-642
    • /
    • 2006
  • Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the re- action temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed, The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.

A Study on the Ester Interchange Reaction of Dimethyl Naphthalate with Ethylene Glycol (Dimethyl Naphthalate와 Ethylene Glycol의 에스테르 교환반응에 관한 연구)

  • Sho, Soon-Yong;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2001
  • The kinetics of ester interchange reaction of dimethyl naphthalate(DMN) with ethylene glycol(EG) has been studied in the range of 180-200 $^{\circ}C$ using zinc and manganese catalysts. The reaction was performed in a semibatch reactor under nonisothermal condition and the degree of reaction was calculated from experimental data of methanol removal rate and reaction temperature. As a reaction model, both the functional group model and the molecular species model were applied and analysed. In case of zinc catalyst, the ratio of reaction rate of methyl hydroxyethyl naphthalate(MHEN) with EG on that of DMN with EG is about 1.4, whereas in case of manganese catalyst the ratio is about 4.3, which implies that the reaction rate is quite dependent on the type of catalyst. In case of zinc catalyst, the reaction order of catalyst concentration on either DMN or MHEN and EG is less than 1, whereas in case of manganese catalyst, the reaction order is larger than 1. The activation energy for zinc and manganese catalyst, irrespective of the type of molecular species, e.g., DMN and MHEN, were found to be 25000 and 28750 cal/mol, respectively. As a result of comparing two reaction model, the molecular species model fits well for the experimental data.

  • PDF

A Study on DME Conversion rate using New Catalyst (신 촉매를 이용한 DME 전환율에 관한 연구)

  • Jeong, I.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.123-128
    • /
    • 2011
  • It has been stand high in estimation to converse from Carbon dioxide to Dimethyl Ether in new alternative fuel energy division in 21C, especially Using of DME in point of view of transportation fuel has been discussed of a new clean energy which is very lower of exhaust gas than gasoline and diesel energy. In this paper it is used ZSM-5 and I developed new catalyst by addition of cerium to control acidity. The new catalyst was proved high conversion rate, when it was conversed from methanol to DME, there wasn't any additional material except DME and water, and I overlooked reaction temperature, reaction time, amount of catalyst, amount of added cerium, effect of water content in methanol, reaction temperature by making change of reaction time. I have conclude that conversion rate to DME was increased as increased of catalyst amounts. The best catalyst condition of without additional product was treated poisoning from ZSM-5 to 5% cerium and new catalyst was not effected in purity of fuel methanol.

Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Ha-Na;Hwang, Taek-Sung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

A Study on the Catalytic Activity of Nontoxic Organometallic Compound in Esterification Reaction between Succinic Acid and 1,4-Butanediol (Succinic Acid과 1,4-butanediol의 에스테르화반응에서 무독성 유기금속 화합물의 촉매 활성에 관한 연구)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.6-13
    • /
    • 2010
  • Esterification reaction between succinic acid and 1,4-butanediol was kinetically investigated in the presence of nontoxic organometallic compound catalyst(ESCAT-100E) at $150-190^{\circ}C$. The reaction rates measured by the amount of distilled water from the reaction vessel. The Esterification reaction was carried out under the first order conditions respect to the concentration of reactants, respectively. The overall reaction order was 2nd. The linear relationship was shown between apparent reaction rate constant and reciprocal absolute temperature. By the Arrhenius plot the activation energy have been calculated as 376.13 kJ/mol under nontoxic organometallic compound catalyst and also apparent reaction rate constant, k' was found to obey first kinetics with respect to the concentration of catalyst.

Effect of Monobutyl Tinoxide Catalyst in Esterification Reaction between Succinic Acid and 1,4-butanediol (Succinic Acid과 1,4-butanediol간의 에스테르화반응에서 Monobutyl Tinoxide 촉매의 영향)

  • Park, Keun-Ho;Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.362-369
    • /
    • 2009
  • Esterification reaction between succinic acid and 1,4-butanediol was kinetically investigated in the presence of monobutyl tinoxide catalysts at $150{\sim}190^{\circ}C$. The reaction rates measured by the amount of distilled water from the reaction vessel. The esterification reaction was carried out under the first order conditions with respect to the concentration of reactants, respectively. The overall reaction order was 2nd. The linear relationship was shown between apparent reaction rate constant and reciprocal absolute temperature. By the Arrhenius plot the activation energy have been calculated as 87.567 kJ/mol under monobutyl tinoxide catalyst and also apparent reaction rate constant, k' was found to obey first kinetics with respect to the concentration of catalyst.

Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni-based Catalysts and it Applications (Ni계 촉매상에서 가솔린의 자열 개질반응에 (Autothermal Reforming)의한 수소제조 및 응용)

  • Moon, Dong Ju;Ryu, Jong-Woo;Yoo, Kye Sang;Lee, Byung Gwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.274-282
    • /
    • 2004
  • This study focused on the development of high performance catalyst for autothermal reforming (ATR) of gasoline to produce hydrogen. The ATR was carried out over MgO/Al2O3 supported metal catalysts prepared under various experimental conditions. The catalysts before and after reaction were characterized by N2-physisorption, CO-chemisorption, SEM and XRD. The performance of supported multi-metal catalysts were better than that of supported mono-metal catalysts. Especially, it was observed that the conversion of iso-octane over prepared Ni/Fe/MgO/Al2O3 catalyst was 99.9 % comparable with commercial catalyst (ICI) and the selectivity of hydrogen over the prepared catalyst was 65% higher than ICI catalyst. Furthermore, it was identified that the sulfur tolerance of prepared catalyst was much better than ICI catalyst based on the ATR reaction of iso-octane containing sulfur of 100 ppm. Therefore, Ni/Fe/MgO/Al2O3 catalyst can be applied for a fuel reformer, hydrogen station and on-board reformer in furl cell powered vehicles.

Effect of Catalyst Preparation on the Selective Hydrogenation of Biphenol over Pd/C Catalysts

  • Cho, Hong-Baek;Park, Jai-Hyun;Hong, Bum-Eui;Park, Yeung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.328-334
    • /
    • 2008
  • The effects of catalyst preparation on the reaction route and the mechanism of biphenol (BP) hydrogenation, which consists of a long series-reaction, were studied. Pd/C catalysts were prepared by incipient wetness method and precipitation and deposition method. The reaction behaviors of the prepared catalysts and a commercial catalyst along with the final product distributions were very different. The choice of the catalyst preparation conditions during precipitation and deposition including the temperature, pH, precursor addition rate, and reducing agent also had significant effects. The reaction behaviors of the catalysts were interpreted in terms of catalyst particle size, metal distribution, and support acidities.