• Title/Summary/Keyword: Catalyst management

Search Result 98, Processing Time 0.024 seconds

Bench-scale Experiment on Catalytic Decomposition of 1,2 Dichlorobenzene by Vanadia-Titania Catalyst

  • Jeong, Ju-Young;Chin, Sung-Min;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.709-714
    • /
    • 2009
  • Catalytic activities of $V_2O_5/TiO_2$ catalyst were investigated under reaction conditions such as reaction temperature, catalyst size, inlet concentration and space velocity. A 1,2-dichlorobenzene(1,2-DCB) concentrations were measured in front and after of the heated $V_2O_5/TiO_2$ catalyst bed, and conversion efficiency of 1,2-DCB was determined from it's concentration difference. The conversion of 1,2-DCB using a pellet type catalyst in the bench-scale reactor was lower than that with the powder type used in the micro flow-scale reactor. However, when the pellet size was halved, the conversion was similar to that with the powder type catalyst. The highest conversion was shown with an inlet concentration of 100 ppmv, but when the concentration was higher or lower than 100 ppmv, the conversion was found to decrease. Complete conversion was obtained when the GHSV was maintained at below 10,000 $h^{-1}$, even at the relatively low temperature of $250^{\circ}C$. Water vapor inhibited the conversion of 1,2-DCB, which was suspected to be due to the competitive adsorption between the reactant and water for active sites.

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min;Kim, Sang-Kyung;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

Status and Strategy on Recycling of Domestic Used Chemical Catalysts (국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향)

  • Kim, Young-Chun;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.3-16
    • /
    • 2017
  • Chemical catalyst products are applied to various fields such as petrochemical process, air pollution prevention facility and automobile exhaust gas purifier. The domestic and overseas chemical catalyst market is increasing every year, and the amount of waste catalyst generated thereby is also increasing. Most of the used chemical catalyst products, such as desulfurized waste catalysts and automobile waste catalysts containing valuable metals are important recyclable resources from a substitute resource point of view. The recycling processes for recovering valuable metals have been commercialized through some urban mining companies, and SCR denitration catalysts have been recycled through some remanufacturing companies. In this paper, the amount of domestic production and recycling of major catalyst products have thus been investigated and analyzed so as to be used as basic data for establishing industrial support policy for recycling of used chemical catalyst products. Also tasks for promoting the recycling of used chemical catalyst products are suggested.

Research on Step-Type Chemical Liquid Deodorizer using Liquid Catalyst

  • WOO, Hyun-Jin;KWON, Lee-Seung;JUNG, Min-Jae;YEO, Og-Gyu;KIM, Young-Do;KWON, Woo-Taeg
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.5
    • /
    • pp.19-25
    • /
    • 2020
  • The purpose of this study was to research and develop a step-type chemical liquid deodorizer including a liquid catalyst that can prevent civil complaints due to odor due to its excellent deodorizing performance. The main composition of chemical liquid deodorizer including liquid catalyst is cleaning deodorization, catalyst deodorization, chemical deodorization, water film plate, deodorization water circulation device, deodorization water injection device, catalyst management system, gas-liquid separation device, chemical supply device, deodorizer control panel, etc. It consists of a device. The air flow of the step-type liquid catalyst chemical liquid deodorizer is a technology that firstly removes basic odor substances, and the liquid catalyst installed in the subsequent process stably removes sulfur compounds, which are acidic odor substances, to discharge clean air. The efficiency of treating the complex odor of the prototype was 98.5% for the first and 99.6% for the second, achieving the target of 95%. The hydrogen sulfide treatment efficiency of the prototype was 100% for the first and 99.9% for the second, which achieved 95%, which was the target of the project. As a result, ammonia was removed by the reaction of ammonia and hydrogen sulfide.

Recovery of Nickel from Spent Petroleum Catalyst by Hydrometallurgical Process (습식제련공정에 의한 석유화학 폐촉매로부터 니켈의 회수)

  • Kim, Jong-Hwa;Song, Ju-Yeong;Yang, Seok-Jin;Jeon, Sung-Gyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.273-281
    • /
    • 2010
  • Nickel recovery method was studied by the wet process from the catalyst used in hydrogenation process. Nickel content in waste catalyst was about 16%. At the waste catalyst leaching system by the alkaline solution, selective leaching of nickel was possible by amine complex formation reaction from ammonia water and ammonium chloride mixed leachate. The best leaching condition of nickel from mixed leachate was acquired at the condition of pH 8. LIX65N as chelating solvent extractant was used to recover nickel from alkaline leachate. The purity of recovered nickel was higher than 99.5%, and the whole quantity of nickel was recovered from amine complex.

Electrochemical Promotion of Pt Catalyst for The Oxidation of Carbon Monoxide

  • Shin, Seock-Jae;Kang, An-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.187-195
    • /
    • 2000
  • Electrochemical promotion of the reaction rate was investigated for CO oxidation in a solid electrolyte catalytic reactor where a thin film of Pt was deposited on the yttria stabilized zirconia as an electrode as well as a catalyst. It was shown under open circuit condition that potential was a mixed potential of $O_2$exchange reaction and electrochemical reaction induced by CO. The effect of electrochemical modification on the CO oxidation rate was studied at various overpotentials and $P_{CO}$$P_{O2}$.

  • PDF

A study of decomposition of harmful gases using Composite catalyst by Photocatalytic plasma reactions (복합촉매를 이용한 플라즈마 반응에 의한 유해가스의 제거에 관한 연구)

  • Park, Hwa-Young;Kim, Kwan-Jung;Woo, In-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.121-132
    • /
    • 2013
  • The objective of this study is to maintain the same frequency as the electrode material, concentration, duration of decomposition efficiency, power consumption and voltage measurements using a composite catalyst according to the change of process parameters to obtain the optimum state of the process and the maximum decomposition efficiency. In this paper, known as a major cause of air pollution, such as NO, NO2, SO2, frequency, flow rate, concentration, the material of the electrodes, and using TiO2 catalyst reactor with surface discharge caused by discharging the reactor plasma NOx, SOx decompose the harmful gas want to remove.

A study of decomposition of sulfur oxides using Composite catalyst by plasma reactions (복합촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구)

  • Woo, In-Sung;Hwang, Myung-Hwan;Kim, Da-Young;Kim, KwanJoong;Kim, Sung-Tea;Park, Hwa-Young
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.04a
    • /
    • pp.655-668
    • /
    • 2013
  • In this study, a combination of the plasma discharge in the reactor by the reaction surface discharge reactor complex catalytic reactor and air pollutants, hazardous gas SOx, change in frequency, residence time, and the thickness of the electrode, the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. 20W power consumption 10kHz frequency decomposition removal rate of 99% in the decomposition of sulfur oxides removal experiment that is attached to the titanium dioxide catalyst reactor experimental results than if you had more than 5% increase. If added to methane gas was added, the removal efficiency increased decomposition, the oxygen concentration increased with increasing degradation rate in the case of adding carbon dioxide decreased.

  • PDF

A Study on the Improvement in Productivity and Safetiness for Calcination Process of Automotive Catalyst by Using Design of Experiment (실험계획을 통한 자동차 촉매 소성 공정의 생산성 향상과 안정성 증대 연구)

  • Jung, Chule-kyou;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • The diesel engine generate many pollutants such as PM(Particulate matter) and NOx(Nitrogen oxide). So the SCR(Selective catalytic reduction) must be required to meet the emission standard. The SCR catalyst market is growing rapidly, and the automobile markets using alternative energy sources are growing rapidly. This study deals with optimization of the calcination process the manufacturing process of SCR catalyst to be competitive. The calcination process is a bottleneck and it is required to optimize productivity and accept to be safety, But we cannot trade off anything in terms of safety. We applied DOE(Design of experiments) among many research methods performed in various fields. In order to achieve quality and productivity optimization. The dependent variables in the DOE were selected as NO Conversion(%). The independent variables were selected as the calcination temperature, soaking time and fan speed RPM. the CCD(Central composite designs) constructs response surface using the data onto experience and finds optimum levels within the fitted response surfaces. Our tests are our stability guarantee and efficient together with operation.