• Title/Summary/Keyword: Catalyst:

Search Result 5,366, Processing Time 0.029 seconds

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.

Surface analysis of rayon-based carbon nanofibers and activated carbon fibers (레이온을 이용한 카본나노섬유와 활성카본섬유의 표면 특성분석)

  • Kim, Youn Jung;Ryu, Sang Hoon;Lim, Woo Taik;Choi, Sik Young
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.296-301
    • /
    • 2007
  • Carbon nanofibers (CNFs) are non-microporous materials with a high surface area ($100{\sim}200m^2/g$) and high purity. Therefore, the material has a high potential for use as catalyst support. Activated carbon fibers (ACFs) are of increasing concern with regard to the levels of toxic air pollutants emitted from high-technology industry. Rayon-based CNFs and ACFs was subjected to thermal oxidation under a wide variety of temperature and air conditions to modify the surface properties. Rayon-based CNFs and ACFs were prepared by using thermal chemistry. CNFs were synthesized at temperatures above $600^{\circ}C$ in an air atmosphere and grew with increased temperature and air conditions. After heating at $800^{\circ}C$ for 72 hr, carbonized rayon with ACFs had $2,662m^2/g$ (BET) of surface area and $1.41cm^3/g$ of pore volume. The resulting ACFs had a 99% surface area in which pore size was 10 nm or less, and a 60 % surface area in which pore size was 2 nm or less.

The Role of CYP2B6*6 Gene Polymorphisms in 3,5,6-Trichloro-2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers

  • Liem, Jen Fuk;Suryandari, Dwi A.;Malik, Safarina G.;Mansyur, Muchtaruddin;Soemarko, Dewi S.;Kekalih, Aria;Subekti, Imam;Suyatna, Franciscus D.;Pangaribuan, Bertha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • Objectives: One of the most widely used pesticides today is chlorpyrifos (CPF). Cytochrome P450 (CYP)2B6, the most prominent catalyst in CPF bioactivation, is highly polymorphic. The objective of our study was to evaluate the role of CYP2B6*6, which contains both 516G>T and 785A>G polymorphisms, in CPF toxicity, as represented by the concentration of 3,5,6-trichloro-2-pyridinol (TCPy), among vegetable farmers in Central Java, Indonesia, where CPF has been commonly used. Methods: A cross-sectional study was conducted among 132 vegetable farmers. Individual socio-demographic and occupational characteristics, as determinants of TCPy levels, were obtained using a structured interviewer-administered questionnaire and subsequently used to estimate the cumulative exposure level (CEL). TCPy levels were detected with liquid chromatography-mass spectrometry. CYP2B6*6 gene polymorphisms were analyzed using a TaqMan® SNP Genotyping Assay and Sanger sequencing. Linear regression analysis was performed to analyze the association between TCPy, as a biomarker of CPF exposure, and its determinants. Results: The prevalence of CYP2B6*6 polymorphisms was 31% for *1/*1, 51% for *1/*6, and 18% for *6/*6. TCPy concentrations were higher among participants with CYP2B6*1/*1 than among those with *1/*6 or *6/*6 genotypes. CYP2B6*6 gene polymorphisms, smoking, CEL, body mass index, and spraying time were retained in the final linear regression model as determinants of TCPy. Conclusions: The results suggest that CYP2B6*6 gene polymorphisms may play an important role in influencing susceptibility to CPF exposure. CYP2B6*6 gene polymorphisms together with CEL, smoking habits, body mass index, and spraying time were the determinants of urinary TCPy concentrations, as a biomarker of CPF toxicity.

Comparative Study on Phenolic Compounds of Cheorwon Onion by Phosphite Treatment (아인산염 처리에 따른 철원양파의 페놀화합물 비교 연구)

  • Kim, Y.B.;Lee, H.J.;Park, C.H.;Kim, D.H.;Koo, H.J.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • The aim of this study was to evaluate the change of phenolic compounds after phosphite treatment on Cheorwon onion. Onion is a perennial plant belonging to the lily family. It is native to Persia of Southwest Asia. It is widely cultivated in the temperate regions of the world. Onion is a good name for the 'Okchong' to drop blood cholesterol and cardiovascular blood flow to increase the prevention of adult diseases. Cheorwon area is inland, but it has high continental climate due to its high altitude. Therefore it is said that the onion cultivated in this region has higher sugar content and higher taste than onion grown in the southern region. Phosphorus components are particularly important ingredients for promoting muscle development. However, if the phosphoric acid content of the soil part is maintained to a large extent until the harvest, the competition of the nutrients tends to cause decay of the root part. Therefore, it is important to improve the quality and shelf life of onion by inducing nutrient balance by applying foliar fertilization method on the reducing phosphorus at harvest time. In this study, acidity was controlled by diluting phosphorous acid(H3PO3) and potassium hydroxide(KOH), followed by leaf surface treatment with phosphite on onion. In this study, the concentration of phosphite was diluted to 500, 1,000, 1,500ppm and sprayed three times over the onion leaves in May 2018 using an atomizer and harvested at the end of June, and the phenolic compounds were analyzed by HPLC. As a result, the content of quercetin, one of the important substances in onion, was phosphite 500ppm(179.70㎍/g), 1,000(150.27), 1,500(105.95). The contents of caffeic acid, p-coumaric acid, ferulic acid, rutin, kaempferol, and sugar content were higher in the treatments than in the control. Therefore, the phosphite does not have a great influence on the growth, but it may play a role as a method of achieving balance with nitrogen in the rainy season by supplying the role of the material catalyst and the water soluble phosphoric acid and the potassium in the influence of the material change.

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

Ensuring the Quality of Higher Education in Ukraine

  • Olha Oseredchuk;Mykola Mykhailichenko;Nataliia Rokosovyk;Olha Komar;Valentyna Bielikova;Oleh Plakhotnik;Oleksandr Kuchai
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.142-148
    • /
    • 2023
  • The National Agency for Quality Assurance in Higher Education plays a crucial role in education in Ukraine, as an independent entity creates and ensures quality standards of higher education, which allow to properly implement the educational policy of the state, develop the economy and society as a whole.The purpose of the article: to reveal the crucial role of the National Agency for Quality Assurance in Higher Education to create quality management of higher education institutions, to show its mechanism as an independent entity that creates and ensures quality standards of higher education. and society as a whole. The mission of the National Agency for Quality Assurance in Higher Education is to become a catalyst for positive changes in higher education and the formation of a culture of its quality. The strategic goals of the National Agency are implemented in three main areas: the quality of educational services, recognition of the quality of scientific results, ensuring the systemic impact of the National Agency. The National Agency for Quality Assurance in Higher Education exercises various powers, which can be divided into: regulatory, analytical, accreditation, control, communication.The effectiveness of the work of the National Agency for Quality Assurance in Higher Education for 2020 has been proved. The results of a survey conducted by 183 higher education institutions of Ukraine conducted by the National Agency for Quality Assurance in Higher Education are shown. Emphasis was placed on the development of "Recommendations of the National Agency for Quality Assurance in Higher Education regarding the introduction of an internal quality assurance system." The international activity and international recognition of the National Agency for Quality Assurance in Higher Education are shown.

A Survey on Korean Medicine Treatment of Autonomic Dysfunction: Preliminary Research for Clinical Practice Guidelines (자율신경실조증 한의표준임상진료지침 개발을 위한 한의임상 실태조사)

  • Hui-Yeong Park;Geum-Ju Song;Hyun Woo Lee;Chan Park;Seok-In Yoon;Jung Hwan Park;Sun-Yong Chung;Jong Woo Kim
    • Journal of Oriental Neuropsychiatry
    • /
    • v.34 no.4
    • /
    • pp.335-347
    • /
    • 2023
  • Objectives: The study aimed to understand the current treatment patterns in Korean medicine to develop clinical practice guidelines for autonomic dysfunction in Korean medicine. Methods: This study sent an online survey vai text message to 25,900 Korean medicine doctors whose contact information was registered with the Association of Korean Medicine. A total of 1,410 Korean medical doctors completed the online survey. Results: When autonomic treating dysfunction clinically, 77% of the cases included only a description without entering a diagnosis code. The most commonly used information to diagnose o autonomic dysfunction was history-taking and symptoms (79%), and the main symptoms of autonomic dysfunction were palpitations, dizziness, sleeping difficulties, anxiety/nervousness, and depression/lethargy. The most frequently mentioned cause of autonomic dysfunction was mental problems (54%). The most commonly used Korean medicine treatment method for autonomic dysfunction was herbal medicine (70%), and Soyo-san/Gamisoyo-san is the most frequently used herbal medicine preparation. Liver qi depression used to indicate the most often mentioned Korean medicine pattern identification used to indicate autonomic dysfunction (31%). When asked whether cardiac neurosis in Chinese medicine can be considered autonomic dysfunction, opinions for and against it are determined almost equally. Conclusions: Our results serve are a foundation for developing clinical practice guidelines for autonomic dysfunction in Korean medicine and are expected to catalyst promoting future clinical research on autonomic dysfunction.

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.