• Title/Summary/Keyword: Catalysis

Search Result 886, Processing Time 0.025 seconds

A Study of the Growth Condition and Solubilization of Phosphate from Hydroxyapatite by Pantoea agglomeraus

  • Il Jung;Park, Don-Hee;Park, Kyungmoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.201-205
    • /
    • 2002
  • The growth conditions of Pantoea aggicmerans, a phosphate solubilizing organism, were studied In our laboratory to determine the optimal conditions. Pantoea aggionerans showed the highest growth rate at 30$\^{C}$, pH 7.0 and 2 vvm, after 50 h cultivation. A certain relationship between pH and phosphate concentration was evident when the glucose concentration in the me dium was changed. Increasing glucose concentration increased the pH buffer action of the broth. At glucose concentrations higher than the optimum concentration of 0.2 M, the cell growth was retarded. P. agglomerans consumed glucose as a substrate to produce organic acids which caused the pH decrease in the culture medium. The phosphate concentration in the medium was increased by the presence of the organic acids, which solubilized insoluble phosphates such as hydroxyapa-tite.

Explorative and Mechanistic Studies of the Photooxygenation of Sulfides

  • Albini, Angelo;Bonesi, Sergio M.
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The results of recent work on the dye-sensitized photooxygenation of sulfides is discussed. In the case of dialkyl sulfides, the weakly bonded adduct initially formed with singlet oxygen (the persulfoxide) decays unproductively unless protonation by an acid (an alcohol or a carboxylic acid) facilitates its conversion to the sulfoxide. The effect is proportional to the strength of the acid (eg., less than 0.1 % chloroacetic acid in benzene is sufficient for maximal efficiency) and corresponds to general acid catalysis, suggesting that protonation of the persulfoxide occurs. On the other hand, with sulfides possessing an activated hydrogen in ${\alpha}$ position (eg., benzyl and allyl sulfides), hydrogen transfer becomes an efficient process in aprotic media and yields a S-hydroperoxysulfoniumm ylide, possibly arising from a conformation of the persulfoxide that is different from the one protonated in the presence of acids. Calculations on some substituted sulfides support this hypothesis. This process, which leads to C-S bond fragmentation with formation of an aldehyde, may be viewed as a general method for the preparation of aryl and heteroaryl aldehydes. In this effort, mechanistic studies offered new hints on the structure of the intermediate persulfoxide.

  • PDF

Preparation of Cu-Al$_2$O$_3$ Composite Powder in the Aqueous Solution by Ha Gas Reduction (수소환원법에 의한 수용액 중 Cu-Al$_2$O$_3$ 복합분말제조)

  • 이종현
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.106-112
    • /
    • 1997
  • $Cu-Al_20_3 $ composite powders were prepared by hydrogen reduction of $Cu^{2+}$ from ammoniacal copper sulfate solution on alumina core using autoclave. The copper reduction rate and the properties of copper layer were investigated using Scanning Electron Microscope(SEM), X-ray diffractometer, size and chemical analyzers. The reduction rate of $Cu^{2+}$ showed the maximum value when the molar ratio of [$NH_3$]/[$Cu^{2+}$] was 2. In order to prevent the agglomeration of Cu powder and ethane reduction rate, $Fe^{2+}$ and anthraquinone which act as catalysis were added in the solution. Catalysis was effectively chanced with the addition of two elemerts at a time. Optimum conditions obtained in this study were hydrogen reduction temperature of 205$^{\cire}C$, stirring speed of 500 rpm and hydrogen partial pressure of 300 psi. Obtained $Cu-Al_20_3 $ composite Powders were found to have the uniform and continuous copper coating layer of nodule shape with 3~5 $\mu$m thickness.

  • PDF

A Substrate Fed-Batch Biphasic Catalysis Process for the Production of Natural Crosslinking Agent Genipin with Fusarium solani ACCC 36223

  • Zhu, Yuyao;Zhao, Botao;Huang, Xiaode;Chen, Bin;Qian, Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.814-819
    • /
    • 2015
  • The natural crosslinking agent genipin has been applied widely in biomedicines and foods nowadays. Because of the special hemiacetal ring structure in its molecule, it can only be prepared by hydrolysis of geniposide according to biocatalysis. In this research, strategies including aqueous-organic biphasic catalysis and substrate fed-batch mode were adopted to improve the biocatalysis process of genipin. A 10 L ethyl acetate-aqueous biphasic system with geniposide fed-batch led to a satisfying genipin yield. With Fusarium solani ACCC 36223, 15.7 g/l genipin in the ethyl acetate phase was obtained, corresponding to space-time yields of 0.654 g l-1 h-1.

The Effect on the pH in ozonation of ammonia with Br catalysis (브롬촉매와 암모니아의 오존산화 반응시 pH의 영향에 관한 연구)

  • 박문숙;안재동;노봉오
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study was conducted to supply basic informations on development of water treatment process for the ozonation of ammonia depend on pH variation with or without bromide catalysis. The results were as follows: The oxidation rate of ammonia increased depend on pH increase at ozone/bromide process. It was found that overall kinetics was zero order with respect to reaction time and reaction velocity constant of zero order increased depend on pH increase from 4.9 to 9.5 and the equation of linearization was $k_{o}$ = 0.00565 ${\times}$ [pH] + 0.0069 at ozone/bromide process. The denitrification reaction of ammonia was superior as the pH increase in the presence of bromide.

Synthesis and Properties of Triblock and Multiblock Copolymers Consisting of Poly(L-lactide) and Poly(oxyethylene-co-oxypropylene)

  • Lee, Chan-Woo;Kang, Young-Goo;Kun Jun
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.84-91
    • /
    • 2001
  • Both A-B-A triblock and multiblock copoly(ester-ether)s consisting of poly(L-Lactide) and poly(oxyethylene-co-oxypropylene) were prepared and characterized. The preparation of the triblock copolymer was done by ring-opening copolymerization of L-lactide with a commercially available telechelic copolyether, Pluronic$\^$TM/(PN) by catalysis of stannous octanoate. The molecular weight and unit composition of the produced copolymers were successfully controlled by changing the L-lactide/PN ratio in feed. However, a high molecular weight copolymer incorporating PN in large amount was not obtained because the molecular weight of the resulting copolymer was limited at a high L-lactide/PN composition. The multiblock copolymer was synthesized by the copolycondensation of oligo(L-lactic acid) prepared by thermal dehydration of L-lactic acid, PN, and dodecanedioic acid as carboxyl/hydroxyl adjusting agent. This polycondensation proceeded by catalysis of stannous oxide to give multiblock copolymers with high molecular weight and wide range of compositions.

  • PDF

Development of fluorination methodology for carbon-fluorine bond formation: old electrophilic fluorinating reagents

  • Bae, Dae Young;Lee, Eunsung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • Electrophilic fluorinating reagents are typically efficient for carbon-fluorine (C-F) bonds formation due to their higher reactivity even under mild condition. Thus, they have been playing an important role to improve C-F bonds formation reactions via direct fluorination reaction with electrophilic fluorinating reagents or transition metal catalysis. Advances on the recent fluorination methods are mainly results of $Selectfluor^{TM}$'s capability on facile fluorination. In this mini-review, we describe synthesis and application of four old yet popular electrophilic fluorinating reagents such as N-fluorobenzenesulfonimide (NFSI), N-fluoropyridinium salts, $Selectfluor^{TM}$, and N-fluorosultam.

Application of Combinatorial Catalysis Techniques for Hydrogen Generation Catalysts (수소 제조 촉매 개발을 위한 조합 촉매 기법의 활용)

  • Suh, Dong-Jin;Wolf, Eduardo E.
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.309-316
    • /
    • 2007
  • 조합 및 고속탐색 실험 기법을 촉매 성분의 선정에 활용하였다. 소형 연료전지 작동을 위한 수소 생산에 가장 적합한 것으로 알려진 메탄을 산화 분해용 촉매의 특성을 적외선 화상 및 병렬형 반응 시스템으로 조사하였다. 반응의 모델을 먼저 제시하고 이를 근거로 Cu-Zn-Pd계 촉매를 선정하였다. 먼저 적외선 화상을 이용한 스크리닝을 위해서는 발열 효과라는 촉매 활성의 간접적인 현상을 보여줄 수 있는 적외선 민감 카메라를 이용하여 한 번에 50개의 시료 측정이 가능한 촉매 시료 배열을 설계하였다. 적외선 화상 결과로 높은 활성을 보이는 촉매 시료를 선정한 다음, 병렬형 반응 시스템과 단일 흐름 고정층 반응 시스템으로 선정된 촉매의 활성 특성을 조사 확인하였다. 본 연구에서 제시한 것과 같은 접근 방법으로 지속적으로 얻어진 결과를 반영하여 최적의 활성을 보이는 촉매 성분을 단기간에 찾아내고자 한다.

Rate Enhancement by Micelle Encapsulation for Oxidation of L-Glutamic Acid in Aqueous Media at Room Temperature

  • Mukherjee, Kakali;Saha, Bidyut
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.425-431
    • /
    • 2013
  • Oxidation of glutamic acid is performed in aqueous acid media at $30^{\circ}C$ under the kinetic condition [glutamic acid]$_T{\gg}[Cr(VI)]_T$. Effect of combination of micellar catalyst (SDS, TX-100) and promoter (PA, bpy, phen) has been studied. Among the promoters phen accelerates the reaction most in aqueous media. But the rate acceleration is small in the case. Combination of promoter and catalyst produces much better result. Maximum rate enhancement occurs in presence of the combination of bpy and SDS.

Reinforcement of Polyethylene Pipes with Modified Carbon Microfibers

  • Petukhova, E.S.;Savvinova, M.E.;Krasnikova, I.V.;Mishakov, I.V.;Okhlopkova, A.A.;Jeong, Dae-Yong;Cho, Jin-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.177-180
    • /
    • 2016
  • The surface properties of carbon microfibers (CMFs) are modified by chemical deposition of carbon nanofibers via the so-called ethylene processing. CMFs and the modified CMFs (MCMFs) are investigated as reinforcement additives to fabricate polyethylene (PE) composites with enhanced mechanical characteristics. The mechanical properties of the PE-MCMF composites are found to be better and favorable for applications under harsh climatic conditions such as those in Siberia. Improved adhesive interaction between MCMFs and PE is responsible for these enhanced mechanical properties.